US20010034526A1 - Expandable reamer - Google Patents

Expandable reamer Download PDF

Info

Publication number
US20010034526A1
US20010034526A1 US09/782,176 US78217601A US2001034526A1 US 20010034526 A1 US20010034526 A1 US 20010034526A1 US 78217601 A US78217601 A US 78217601A US 2001034526 A1 US2001034526 A1 US 2001034526A1
Authority
US
United States
Prior art keywords
shaft
blade
blades
elongated
expandable reamer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/782,176
Other versions
US6383188B2 (en
Inventor
Stephen Kuslich
Francis Peterson
Todd Bjork
Joseph Gleason
Rodney Rogstad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spineology Inc
Original Assignee
Spineology Group LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22669228&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20010034526(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Spineology Group LLC filed Critical Spineology Group LLC
Priority to US09/782,176 priority Critical patent/US6383188B2/en
Assigned to SPINEOLOGY GROUP, LLC, THE reassignment SPINEOLOGY GROUP, LLC, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUSLICH, STEPHEN D., GLEASON, JOSEPH E., BJORK, TODD, PETERSON, FRANCIS, ROGSTAD, RODNEY
Publication of US20010034526A1 publication Critical patent/US20010034526A1/en
Assigned to SPINEOLOGY GROUP, LLC, THE reassignment SPINEOLOGY GROUP, LLC, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUSLICH, STEPHEN
Publication of US6383188B2 publication Critical patent/US6383188B2/en
Application granted granted Critical
Assigned to SPINEOLOGY INC. reassignment SPINEOLOGY INC. CORRECTIVE ASSIGNMENT TO CORRECT ASSIGNEE RECORDED AT REEL 012803 FRAME 0260 Assignors: THE SPINEOLOGY GROUP LLC
Priority to US10/842,057 priority patent/USRE42757E1/en
Assigned to MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC. reassignment MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC. SECURITY AGREEMENT Assignors: SPINEOLOGY, INC.
Assigned to SPINEOLOGY, INC. reassignment SPINEOLOGY, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SPINEOLOGY GROUP, LLC
Assigned to SPINEOLOGY, INC. reassignment SPINEOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC.
Assigned to MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC. reassignment MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC. SECURITY AGREEMENT Assignors: SPINEOLOGY INC
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1615Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
    • A61B17/1617Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material with mobile or detachable parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/83Tool-support with means to move Tool relative to tool-support
    • Y10T408/85Tool-support with means to move Tool relative to tool-support to move radially
    • Y10T408/858Moving means including wedge, screw or cam
    • Y10T408/8583Moving means including wedge, screw or cam with resiliently urged Tool
    • Y10T408/85843Resilient Tool or tool-support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/83Tool-support with means to move Tool relative to tool-support
    • Y10T408/85Tool-support with means to move Tool relative to tool-support to move radially
    • Y10T408/858Moving means including wedge, screw or cam
    • Y10T408/8588Axially slidable moving-means

Definitions

  • This invention relates to an expandable reamer for use in surgery, particularly in orthopedic applications.
  • U.S. Pat. No. 5,445,639 to Kuslich et al. describes an intervertebral reamer which is used to ream out the interior of a degenerated disc to clean the interbody space.
  • U.S. Pat. Nos. 5,549,679 and 5,571,189 to Kuslich describes a device and method for stabilizing the spinal segment with an expandable, porous fabric implant for insertion into the interior of a reamed out disc which is packed with material to facilitate bony fusion.
  • U.S. Pat. No. 5,928,239 to Mirza discloses a reamer which has a shaft and a cutting tip attached through a free rotating hinge such that high speed rotation allows the tip to be deflected outwardly to form a cavity.
  • U.S. Pat. No. 5,591,170 to Spievack et al discloses a powered bone saw which inserts its cutting blade through a bored intramedullary canal.
  • the invention provides a surgical tool is for forming hollow chambers within bone that are larger in diameter than the external opening into the chamber.
  • the tool has a distal end with external dimensions sized to be passed through the patient's anatomy to a point of entry into the bone.
  • Retractable cutting blades are provided on the cutting end. The blades can be extended to cut a cavity greater than the diameter of the surgical tool.
  • FIG. 1 is a perspective view of the reamer of the invention wherein the blades of the reamer are shown in the retracted position;
  • FIG. 2 is an exploded view of the reamer of FIG. 1;
  • FIG. 3 is top down view of an embodiment of the blade advancer arbor portion of the reamer of FIG. 1;
  • FIG. 4 is an exploded view of an embodiment of the blade advancer arbor
  • FIG. 5 is a side view of the blade assembly portion of the reamer of FIG. 1, wherein the blades are shown in the retracted position;
  • FIG. 6 is a side view of the blade assembly portion of the reamer of FIG. 1, wherein the blades are shown in the retracted position;
  • FIG. 7 is an exploded view of an embodiment of the blade assembly and guides
  • FIG. 8 is an enlarged view of a portion of the distal end of the blade assembly with a blade in the retracted position
  • FIG. 9 is an enlarged view of a portion of the distal end of the blade assembly with a blade extended
  • FIG. 10 is a perspective view of an alternative embodiment of the reamer
  • FIG. 11 is an exploded view of the reamer of FIG. 10;
  • FIG. 12 is a close up view of threaded portion and end of the shaft shown in FIG. 11;
  • FIG. 13 is a view depicting the assembly of the barrel and turn wheel of the reamer shown in FIG. 11;
  • FIG. 14 is a side view of an alternative embodiment of the blade assembly wherein the blades are retracted
  • FIG. 15 is a side view of the blade assembly shown in FIG. 14 wherein the blades are extended;
  • FIG. 16 is an enlarged view of a portion of the distal end of the blade assembly of FIG. 14 with a blade in the retracted position;
  • FIG. 17 is an enlarged view of a portion of the distal end of the blade assembly of FIG. 14 with a blade extended.
  • FIGS. 1 through 17 in which identical elements are numbered identically throughout.
  • FIGS. 1 and 2 an embodiment of the inventive reamer, indicated generally by reference numeral 132 , is shown.
  • the reamer 132 includes a handle 134 , a blade advancing arbor 138 and a main shaft 136 .
  • Within the main shaft is an elongate shaft 140 which may extends distally beyond the distal end of the main shaft 136 .
  • the elongated shaft 140 includes a blade advancing tab 148 at the proximal end and a pair of blades 142 , 144 hingedly mounted to the distal end by a hinge pin 146 .
  • main shaft 136 is hollow to allow it to carry the elongated shaft 140 and the blade guides 150 and 152 .
  • the blade guides 150 and 152 each have a relatively slender shaft 154 a proximal tab 156 and an arcuate guide slot 158 at their distal ends.
  • the elongated shaft 140 is positioned between the blade guides 150 and 152 .
  • the diameter of shaft 136 at distal end 172 is sized such that shaft 136 can be inserted into a patient's body with distal end 172 placed against a diseased disc or other bone without shaft 136 having undue interference with other anatomical organs.
  • FIG. 4 shows that main shaft 136 is attached to a guide member 182 which defines a guide tab slot 184 for engaging the guide tabs 156 .
  • the blade advancing tab 148 and the assocaiated shaft 140 longitudinally moveable therebetween.
  • the end of the guide member 182 includes a threaded shaft 190 which is received into an opening 192 in blade advancer knob 194 .
  • the guide member 182 is inserted into an opening in blade advancer barrel 138 .
  • Blade advancer barrel 138 includes an annular recess 200 to mate with knob lip 202 which rotatably secures the knob 194 to the barrel 138 .
  • the barrel 138 may include a shaped opening 204 designed to engage shaped member 206 on the guide member 182 .
  • the guide member 182 is inserted into opening 204 with the elongated blade shaft 140 and the blade advancing tab 148 as well as blade guides 156 fully inserted into slot 184 .
  • the blade advancing tab 148 projects above the guide member 182 such that a groove 210 may be provided in the blade advancer barrel 138 to allow the assembly to pass therewithin.
  • the guide member 182 may include a pin 212 which passes from the guide member 182 across the barrel opening 216 to engage the pin opening 232 of the slide door 214 .
  • the tab 148 protrudes through the tab opening 230 of the door 214 such as may be seen in FIG. 3. This mutually engaging relationship keeps the elongated blade shaft 140 from moving.
  • the slide door 214 is placed onto blade advancer barrel 138 to close the access opening 216 .
  • the slide door may be held at the proximal end by engagement of its tabs 220 to slots 222 in the barrel.
  • the distal end of the door 214 is held in position by a lock ring 224 that engages with threads 226 or the like on the distal end of barrel 138 as is shown in FIG. 4.
  • the slide door 214 includes a pair of openings 230 , 232 . Opening 230 engages with tab 148 to keep the elongated shaft 140 from moving. Observation of the position of the pin 212 within the confines of opening 232 allows a user to track the degree of movement that the shaft 136 makes longitudinally in response to turning knob 194 .
  • knob 194 when knob 194 is turned or rotated, the shaft 136 is moved inwardly or outwardly within barrel 138 .
  • the movement of the shaft 138 is relative to the elongate shaft 140 which is held stationary by the blade advancing tab 148 within shaft 138 .
  • This functional relationship causes the blades 142 and 144 to pivotally retract or expand relative to shaft 136 , such as may be seen in FIGS. 5 and 6.
  • movement of knob 194 actually causes the entire shaft 136 , together with blade guides 150 and 152 , which forces the blades to move as their engagement members 160 move within arcuate guide slots 158 of the blade guides.
  • the blades 142 , 144 each include an engagement member 160 which aligns with arcuate guide slot 158 , defined by the diverter housings 166 and 168 respectively.
  • the blades are extended out their maximum extent for cutting with blade portions 162 , such as may best be seen in FIG. 9.
  • the blades 142 and 144 are retracted for insertion and/or withdrawal from the patient.
  • FIGS. 10 - 17 an alternative embodiment of the invention is shown.
  • FIGS. 10 - 17 are directed to a more compact form of the reamer of the present invention.
  • the diameter of the reamer 90 with closed blades such as may best be seen in FIG. 14 may have a diameter of approximately 5 mm or less.
  • the present reamer 90 may be used to create openings through pedicles, channels for anterior cruciate ligaments and the like. Rather, an elongated tube and barrel 100 carry a long rod 92 that attaches at the proximal end to a turn wheel 96 that moves the blades distally and proximally.
  • the end of the long rod 92 is attached to two like blades by a pivot 118 that allows the blades 114 and 116 to change position.
  • Each of the blades 114 and 116 have a sloping lever side 120 that allows them to move smoothly outwardly.
  • a notch or stop 126 bottoms out against the main tube 100 to prevent further movement.
  • the handle may have a flat slot 107 milled therein that allows the user to see whether the rod 92 is in position for cutting or pushed forward for no cutting.
  • a second slot 106 provides an access space sufficient to allow a user to remove the retaining clip 108 , so that the reamer may be disassembled as discussed below.
  • the barrel 102 along with the shaft housing 104 may then be slid off of the elongate shaft 92 .
  • the blades 114 and 116 will be free to move into the retracted position by merely pulling the shaft 92 from the bone or operation site (not shown).
  • reamer 90 is elegantly simple. It includes an elongated shaft 92 with a proximal tab 129 which may include a threaded proximal end 94 which may receive the tab 129 via slot 128 .
  • the combined threaded proximal end 94 and elongate shaft 92 is engaged with the turn wheel 96 thereby providing a the shaft 92 with the ability to be moved up and down within holder 100 as the wheel 96 is turned.
  • the holder 100 includes an enlarged barrel 102 into which the turn wheel 96 may partially descend and a lower hollow cylindrical guide 104 .
  • the distal end 110 of shaft 92 includes a narrow tang 111 which has an opening therethrough to allow blades 114 , 116 to be hingedly attached via a hinge pin member 118 .
  • the blades 114 , 116 include a ramp portion 120 sized to enter cylindrical tube 104 and a cutting portion 122 .
  • the cutting portion 122 of the blades 114 and 116 may be serrated.
  • turn wheel 96 is turned to pull the shaft 92 up into the cylindrical tube 104
  • the ramped portion 120 enters the tube 104 and begins to extend the blade portion 122 out past the diameter of the tang 111 .
  • blades 114 , 116 are at their most extended portion as limited by a stop member 126 which abuts against the cylindrical tube 104 preventing further extension.
  • Turn wheel 96 may include depth marking slot 107 which allows the user to see how far the blades have extended or retracted.
  • the portion of the shaft 92 which may be seen through the slot 107 may have visible markings or surface features to better provide a visual basis for determining the extent of the blade retraction or extension based on the relative position of the shaft 92 within the slot 107 .
  • the turn wheel 96 may be removed, allowing the holder 100 to slide away from the shaft 92 . In such a case, the blades 114 , 116 would freely pivot on hinge pin 118 allowing the remainder of the reamer 90 to be readily removed.
  • FIGS. 11 - 13 show the construction of the barrel 102 and the interface of the turn wheel 96 to the reamer 90 .
  • Turn wheel 96 includes a projection member 97 , which may be a threaded nut or screw which is inserted into the turn wheel 96 and threadingly engaged to a retaining clip 108 .
  • the retaining clip 108 is fittingly or frictionally engaged to a retaining slot 109 positioned about the proximal end of the barrel 102 , the position of the retaining slot 109 corresponds to the position of the indentation 98 of member 97 when member 97 is threadingly engaged to threaded proximal end 94 .
  • the slot 109 has a diameter less than the diameter of the surrounding barrel 102 .
  • Barrel 102 includes a bore which communicates through the cylindrical tube 104 .
  • an opening 124 is formed which conforms to the cross-sectional shape of the threaded end 94 and tab 129 .
  • the indentation 98 of the projection member 97 engages the retaining clip 108 such that when threaded end 128 is threaded into opening 130 or the turn wheel 96 , the turn wheel 96 cannot be removed from shaft 92 without unscrewing the shaft 92 from opening 130 and removing lock pin 108 .
  • the spring 95 (shown in FIG. 11) is biased between shoulder 99 of member 98 and shoulder 135 of the turn wheel 96 .
  • This biasing relationship provides sufficient tension force to between the member 98 and the wheel 96 to prevent unintentional movement of the turn wheel relative to the barrel 102 .
  • the wheel 96 In order to rotate the wheel 96 , the wheel 96 must be pulled longitudinally away from the barrel 102 with sufficient force to overcome the biasing force of the spring 95 . When pulled in this manner the wheel may be freely rotated.
  • the turn wheel includes a plurality of engagement pins 131 .
  • Each engagement pins 131 is engaged to receiving holes 133 .
  • the wheel 96 is pulled in the manner described above, but additionally must be pulled a sufficient distance away from the barrel 102 to disengage the pins 131 from the holes 133 .
  • the wheel 96 may then be rotated to a point where the pins 131 may be reinserted into the holes 133 in an advancing clockwise or counter-clockwise manner.
  • blades 114 and 116 include a cutting edges 122 .
  • the cutting edges 122 may be serrated, however straight, or curved cutting edges 122 may also be provided.
  • the blades of the inventive reamer may be constructed from a variety of materials such as metal, composite materials such as carbon etc. Where the blades are metal, the metal may be any type of metal suitable for use in constructing a blade for use in medical procedures. Such metals may include: stainless steel, spring steel, titanium, nickel, or any alloys thereof.
  • the blades 116 ( 114 is not shown) are shown in a mostly retracted position, whereas in FIG. 15 the blades 114 and 116 are depicted in a fully extended position. Any position between a fully retracted and fully extended position is possible with the reamer tool 90 of the invention.
  • the blades 114 and 116 are fully retracted and the device 90 is inserted into an opening drilled into the body material where a cavity is to be formed.
  • a hole is drilled into the vertebral body or other bone or area that needs to be reamed to a diameter larger than the outside drill hole.
  • the hole is drilled in the bone, and then a guide tube may be abutted against the bone and adjusted to the proper length or depth where it is desired to ream the hole.
  • the reamer 90 is then inserted through the optional guide tube with the blades 114 and 116 in the retracted position, such as is shown in FIG. 14.
  • the turn wheel 96 is rotated to begin expansion of the blades 114 and 116 .
  • Rotation of the reamer 92 with the blades 114 and 116 gradually expanding, provides a cutting action which reams out a chamber from within the bone.
  • the blades 114 and 116 are retracted by rotating the turn wheel 96 in a direction opposite that which was used to expand the blades, until the blades 114 and 116 are fully retracted.
  • the present embodiment does not rely on the ramps or slots to retract the blades. Instead, the blades 114 and 116 may be free to retract when pulled from the hole. Thus when the reamer 90 is withdrawn from the hole the blades 114 and 116 may retract by themselves as a result of engagement with the drill hole shaft or the guide tube.
  • the surgeon may visualize the degree the blades 114 and 116 extend by viewing the position of the shaft 92 relative to the barrel 102 , through view port 107 .
  • the shaft 92 may have markings or surface features to make such position determinations easier. In the embodiment shown, the surgeon can see how far down the shaft 92 moves as the turning wheel 96 is rotated.
  • the reamer 90 may be calibrated to show the distance the blades project from the tool.

Abstract

An expandable reamer for forming a space within a vertebral disc includes a pair of opposing blades which have a expanded state and a retracted state. The blades being pivotally positioned at the distal end of a shaft assembly. A shaft housing being substantially disposed about the shaft assembly. The proximal end of the shaft assembly being operatively engaged by a control device which when rotated allows the blades to be fully retracted for insertion into a pre-bored hole and then to be expanded incrementally until the cavity is bored as desired.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present Utility Patent Application claims priority to Provisional Application No. 60/182,610 filed Feb. 15, 2000, the entire contents of which being incorporated herein by reference.[0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • Not Applicable [0002]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • This invention relates to an expandable reamer for use in surgery, particularly in orthopedic applications. [0004]
  • 2. Description of the Related Art [0005]
  • U.S. Pat. No. 5,445,639 to Kuslich et al., describes an intervertebral reamer which is used to ream out the interior of a degenerated disc to clean the interbody space. U.S. Pat. Nos. 5,549,679 and 5,571,189 to Kuslich describes a device and method for stabilizing the spinal segment with an expandable, porous fabric implant for insertion into the interior of a reamed out disc which is packed with material to facilitate bony fusion. [0006]
  • U.S. Pat. No. 5,928,239 to Mirza discloses a reamer which has a shaft and a cutting tip attached through a free rotating hinge such that high speed rotation allows the tip to be deflected outwardly to form a cavity. U.S. Pat. No. 5,591,170 to Spievack et al discloses a powered bone saw which inserts its cutting blade through a bored intramedullary canal. [0007]
  • The reamer of U.S. Pat. No. 5,445,639 is better suited to make a cylindrical bore than a spherical bore as is needed for the methods and apparatus of U.S. Pat. Nos. 5,549,679 and 5,571,189, the disclosure of all of which are incorporated herein by reference. There exists, therefore, a need for an instrument which will simplify the surgeon's task of forming a chamber within the interbody space. [0008]
  • The art described in this section is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention, unless specifically designated as such. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R. § 1.56(a) exists. [0009]
  • SUMMARY OF THE INVENTION
  • The invention provides a surgical tool is for forming hollow chambers within bone that are larger in diameter than the external opening into the chamber. The tool has a distal end with external dimensions sized to be passed through the patient's anatomy to a point of entry into the bone. Retractable cutting blades are provided on the cutting end. The blades can be extended to cut a cavity greater than the diameter of the surgical tool.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A detailed description of the invention is hereafter described with specific reference being made to the drawings in which: [0011]
  • FIG. 1 is a perspective view of the reamer of the invention wherein the blades of the reamer are shown in the retracted position; [0012]
  • FIG. 2 is an exploded view of the reamer of FIG. 1; [0013]
  • FIG. 3 is top down view of an embodiment of the blade advancer arbor portion of the reamer of FIG. 1; [0014]
  • FIG. 4 is an exploded view of an embodiment of the blade advancer arbor; [0015]
  • FIG. 5 is a side view of the blade assembly portion of the reamer of FIG. 1, wherein the blades are shown in the retracted position; [0016]
  • FIG. 6 is a side view of the blade assembly portion of the reamer of FIG. 1, wherein the blades are shown in the retracted position; [0017]
  • FIG. 7 is an exploded view of an embodiment of the blade assembly and guides; [0018]
  • FIG. 8 is an enlarged view of a portion of the distal end of the blade assembly with a blade in the retracted position; [0019]
  • FIG. 9 is an enlarged view of a portion of the distal end of the blade assembly with a blade extended; [0020]
  • FIG. 10 is a perspective view of an alternative embodiment of the reamer; [0021]
  • FIG. 11 is an exploded view of the reamer of FIG. 10; [0022]
  • FIG. 12 is a close up view of threaded portion and end of the shaft shown in FIG. 11; [0023]
  • FIG. 13 is a view depicting the assembly of the barrel and turn wheel of the reamer shown in FIG. 11; [0024]
  • FIG. 14 is a side view of an alternative embodiment of the blade assembly wherein the blades are retracted; [0025]
  • FIG. 15 is a side view of the blade assembly shown in FIG. 14 wherein the blades are extended; [0026]
  • FIG. 16 is an enlarged view of a portion of the distal end of the blade assembly of FIG. 14 with a blade in the retracted position; and [0027]
  • FIG. 17 is an enlarged view of a portion of the distal end of the blade assembly of FIG. 14 with a blade extended.[0028]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference is now directed to FIGS. 1 through 17 in which identical elements are numbered identically throughout. [0029]
  • In FIGS. 1 and 2 an embodiment of the inventive reamer, indicated generally by [0030] reference numeral 132, is shown. The reamer 132 includes a handle 134, a blade advancing arbor 138 and a main shaft 136. Within the main shaft is an elongate shaft 140 which may extends distally beyond the distal end of the main shaft 136. As may be seen, the elongated shaft 140 includes a blade advancing tab 148 at the proximal end and a pair of blades 142, 144 hingedly mounted to the distal end by a hinge pin 146.
  • As may best be seen in FIG. 2, [0031] main shaft 136 is hollow to allow it to carry the elongated shaft 140 and the blade guides 150 and 152. The blade guides 150 and 152 each have a relatively slender shaft 154 a proximal tab 156 and an arcuate guide slot 158 at their distal ends. The elongated shaft 140 is positioned between the blade guides 150 and 152.
  • The diameter of [0032] shaft 136 at distal end 172 is sized such that shaft 136 can be inserted into a patient's body with distal end 172 placed against a diseased disc or other bone without shaft 136 having undue interference with other anatomical organs.
  • FIG. 4 shows that [0033] main shaft 136 is attached to a guide member 182 which defines a guide tab slot 184 for engaging the guide tabs 156. The blade advancing tab 148 and the assocaiated shaft 140 longitudinally moveable therebetween. The end of the guide member 182 includes a threaded shaft 190 which is received into an opening 192 in blade advancer knob 194. The guide member 182 is inserted into an opening in blade advancer barrel 138. Blade advancer barrel 138 includes an annular recess 200 to mate with knob lip 202 which rotatably secures the knob 194 to the barrel 138. The barrel 138 may include a shaped opening 204 designed to engage shaped member 206 on the guide member 182.
  • In the embodiment shown, the [0034] guide member 182 is inserted into opening 204 with the elongated blade shaft 140 and the blade advancing tab 148 as well as blade guides 156 fully inserted into slot 184. The blade advancing tab 148 projects above the guide member 182 such that a groove 210 may be provided in the blade advancer barrel 138 to allow the assembly to pass therewithin.
  • The [0035] guide member 182 may include a pin 212 which passes from the guide member 182 across the barrel opening 216 to engage the pin opening 232 of the slide door 214. When properly assembled the tab 148 protrudes through the tab opening 230 of the door 214 such as may be seen in FIG. 3. This mutually engaging relationship keeps the elongated blade shaft 140 from moving.
  • After the [0036] guide member 182 is inserted fully into the barrel 138, the slide door 214 is placed onto blade advancer barrel 138 to close the access opening 216. The slide door may be held at the proximal end by engagement of its tabs 220 to slots 222 in the barrel. The distal end of the door 214 is held in position by a lock ring 224 that engages with threads 226 or the like on the distal end of barrel 138 as is shown in FIG. 4.
  • As stated above, the [0037] slide door 214 includes a pair of openings 230, 232. Opening 230 engages with tab 148 to keep the elongated shaft 140 from moving. Observation of the position of the pin 212 within the confines of opening 232 allows a user to track the degree of movement that the shaft 136 makes longitudinally in response to turning knob 194.
  • As may best be seen in FIG. 4, when [0038] knob 194 is turned or rotated, the shaft 136 is moved inwardly or outwardly within barrel 138. The movement of the shaft 138 is relative to the elongate shaft 140 which is held stationary by the blade advancing tab 148 within shaft 138. This functional relationship causes the blades 142 and 144 to pivotally retract or expand relative to shaft 136, such as may be seen in FIGS. 5 and 6. However, movement of knob 194 actually causes the entire shaft 136, together with blade guides 150 and 152, which forces the blades to move as their engagement members 160 move within arcuate guide slots 158 of the blade guides.
  • As may best be seen in FIG. 7, the [0039] blades 142, 144 each include an engagement member 160 which aligns with arcuate guide slot 158, defined by the diverter housings 166 and 168 respectively. When the engagement members 160 are fully within arcuate guide slots 158, the blades are extended out their maximum extent for cutting with blade portions 162, such as may best be seen in FIG. 9. As the engagement members 160 are withdrawn from the guide slots 158, such as may be seen in FIG. 8, the blades 142 and 144 are retracted for insertion and/or withdrawal from the patient.
  • Turning to FIGS. [0040] 10-17, an alternative embodiment of the invention is shown. FIGS. 10-17 are directed to a more compact form of the reamer of the present invention. As depicted herein, the diameter of the reamer 90 with closed blades, such as may best be seen in FIG. 14 may have a diameter of approximately 5 mm or less. The present reamer 90 may be used to create openings through pedicles, channels for anterior cruciate ligaments and the like. Rather, an elongated tube and barrel 100 carry a long rod 92 that attaches at the proximal end to a turn wheel 96 that moves the blades distally and proximally. The end of the long rod 92 is attached to two like blades by a pivot 118 that allows the blades 114 and 116 to change position. Each of the blades 114 and 116 have a sloping lever side 120 that allows them to move smoothly outwardly. A notch or stop 126 bottoms out against the main tube 100 to prevent further movement. The handle may have a flat slot 107 milled therein that allows the user to see whether the rod 92 is in position for cutting or pushed forward for no cutting. A second slot 106 provides an access space sufficient to allow a user to remove the retaining clip 108, so that the reamer may be disassembled as discussed below.
  • Note that if the [0041] blades 114 and 116 were ever stuck in an open position, the handle 96 could be removed, allowing the tube to be removed and then the blades 114 and 116 would have nothing to keep them open. This blade setup allows disassembly if the blades are stuck open in the bone. Prior reamer designs may be difficult to disengage in such an event. In this design, the entire device may be disassembled from the proximal end such that the parts are released allowing the blades 114 and 116 to pivot freely. In the embodiment shown in FIG. 11, removal of the retaining clip 108 will allow the turn wheel 96 to be separated from the barrel 102. The barrel 102 along with the shaft housing 104 may then be slid off of the elongate shaft 92. When the shaft 92 is no longer retained by the housing 104, the blades 114 and 116 will be free to move into the retracted position by merely pulling the shaft 92 from the bone or operation site (not shown).
  • As shown in FIGS. [0042] 10-14, reamer 90 is elegantly simple. It includes an elongated shaft 92 with a proximal tab 129 which may include a threaded proximal end 94 which may receive the tab 129 via slot 128. The combined threaded proximal end 94 and elongate shaft 92 is engaged with the turn wheel 96 thereby providing a the shaft 92 with the ability to be moved up and down within holder 100 as the wheel 96 is turned.
  • The [0043] holder 100 includes an enlarged barrel 102 into which the turn wheel 96 may partially descend and a lower hollow cylindrical guide 104. The distal end 110 of shaft 92 includes a narrow tang 111 which has an opening therethrough to allow blades 114, 116 to be hingedly attached via a hinge pin member 118.
  • As best shown in FIGS. 14 and 15, the [0044] blades 114, 116 include a ramp portion 120 sized to enter cylindrical tube 104 and a cutting portion 122. As may be seen in FIGS. 14-17, the cutting portion 122 of the blades 114 and 116 may be serrated. When turn wheel 96 is turned to pull the shaft 92 up into the cylindrical tube 104, the ramped portion 120 enters the tube 104 and begins to extend the blade portion 122 out past the diameter of the tang 111. As shown in FIG. 15, blades 114, 116 are at their most extended portion as limited by a stop member 126 which abuts against the cylindrical tube 104 preventing further extension.
  • [0045] Turn wheel 96 may include depth marking slot 107 which allows the user to see how far the blades have extended or retracted. In addition, the portion of the shaft 92 which may be seen through the slot 107 may have visible markings or surface features to better provide a visual basis for determining the extent of the blade retraction or extension based on the relative position of the shaft 92 within the slot 107. In the unlikely event that the reamer blades 114, 116 cannot be readily retracted within the cavity being formed, the turn wheel 96 may be removed, allowing the holder 100 to slide away from the shaft 92. In such a case, the blades 114, 116 would freely pivot on hinge pin 118 allowing the remainder of the reamer 90 to be readily removed.
  • FIGS. [0046] 11-13 show the construction of the barrel 102 and the interface of the turn wheel 96 to the reamer 90. Turn wheel 96 includes a projection member 97, which may be a threaded nut or screw which is inserted into the turn wheel 96 and threadingly engaged to a retaining clip 108. The retaining clip 108 is fittingly or frictionally engaged to a retaining slot 109 positioned about the proximal end of the barrel 102, the position of the retaining slot 109 corresponds to the position of the indentation 98 of member 97 when member 97 is threadingly engaged to threaded proximal end 94. The slot 109 has a diameter less than the diameter of the surrounding barrel 102. Barrel 102 includes a bore which communicates through the cylindrical tube 104.
  • As may be best understood from viewing FIG. 11, in order for the [0047] turn wheel 96 to be properly engaged to the barrel 102 a variety of components must initially be assembled with in the wheel 96. A projecting member 97 is inserted through the turn wheel 96. Disposed about the projection member 97 is a biasing member such as a coiled spring 95. The spring 95 is pushed into the wheel 96 along with the member 97. A retaining ring 93 is fittingly engaged into the wheel 96 to retain the member 97 and spring 95 therein.
  • As may best be seen in FIG. 13, at the proximal end of the [0048] barrel 102, an opening 124 is formed which conforms to the cross-sectional shape of the threaded end 94 and tab 129. The indentation 98 of the projection member 97 engages the retaining clip 108 such that when threaded end 128 is threaded into opening 130 or the turn wheel 96, the turn wheel 96 cannot be removed from shaft 92 without unscrewing the shaft 92 from opening 130 and removing lock pin 108.
  • In one embodiment of the invention, when the [0049] turn wheel 96 is assembled in the manner described above, the spring 95 (shown in FIG. 11) is biased between shoulder 99 of member 98 and shoulder 135 of the turn wheel 96. This biasing relationship provides sufficient tension force to between the member 98 and the wheel 96 to prevent unintentional movement of the turn wheel relative to the barrel 102. In order to rotate the wheel 96, the wheel 96 must be pulled longitudinally away from the barrel 102 with sufficient force to overcome the biasing force of the spring 95. When pulled in this manner the wheel may be freely rotated.
  • In an alternative embodiment of the invention, the turn wheel includes a plurality of engagement pins [0050] 131. Each engagement pins 131 is engaged to receiving holes 133. In order to rotate the wheel 96 the wheel 96 is pulled in the manner described above, but additionally must be pulled a sufficient distance away from the barrel 102 to disengage the pins 131 from the holes 133. The wheel 96 may then be rotated to a point where the pins 131 may be reinserted into the holes 133 in an advancing clockwise or counter-clockwise manner.
  • When the [0051] reamer 90 is assembled in the manner described above, clockwise rotation of the turn wheel 96 causes shaft 92 to be pulled up tube 104 such that ramp portion 120, such as may be seen in FIGS. 14-17, enters tube 104 causing the blades 114, 116 to extend outwardly until the stop 126 abuts with the distal end of tube 104.
  • As shown in FIG. 14-[0052] 17, blades 114 and 116 include a cutting edges 122. In the embodiment shown, the cutting edges 122 may be serrated, however straight, or curved cutting edges 122 may also be provided. In the various embodiments described herein, the blades of the inventive reamer may be constructed from a variety of materials such as metal, composite materials such as carbon etc. Where the blades are metal, the metal may be any type of metal suitable for use in constructing a blade for use in medical procedures. Such metals may include: stainless steel, spring steel, titanium, nickel, or any alloys thereof.
  • As may be seen in FIG. 14, the blades [0053] 116 (114 is not shown) are shown in a mostly retracted position, whereas in FIG. 15 the blades 114 and 116 are depicted in a fully extended position. Any position between a fully retracted and fully extended position is possible with the reamer tool 90 of the invention.
  • In operation, the [0054] blades 114 and 116 are fully retracted and the device 90 is inserted into an opening drilled into the body material where a cavity is to be formed. Typically a hole is drilled into the vertebral body or other bone or area that needs to be reamed to a diameter larger than the outside drill hole. The hole is drilled in the bone, and then a guide tube may be abutted against the bone and adjusted to the proper length or depth where it is desired to ream the hole. The reamer 90 is then inserted through the optional guide tube with the blades 114 and 116 in the retracted position, such as is shown in FIG. 14. Once inserted into the bone to a desired depth, the turn wheel 96 is rotated to begin expansion of the blades 114 and 116. Rotation of the reamer 92 with the blades 114 and 116 gradually expanding, provides a cutting action which reams out a chamber from within the bone.
  • In use, turning or rotating the [0055] turn wheel 96 relative to the barrel 102 causes the shaft 92 to be moved longitudinally relative to the shaft housing 104. This action causes the blades 114 and 116 to pivot around the pivot member 118 thereby expanding out from or retracting into the tapered ramps 119, as seen in FIGS. 16 and 17, depending on the direction of the turn wheel's rotation. As the blades 114 and 116 are rotated out of the ramps 119 the entire reamer 92 may be rotated causing the blades 114 and 116 to cut an expanding hole in the cavity, which is limited in size to the maximum expanded state of the blades 114 and 116, such as is shown in FIG. 15.
  • Once a reamed cavity is made, the [0056] blades 114 and 116 are retracted by rotating the turn wheel 96 in a direction opposite that which was used to expand the blades, until the blades 114 and 116 are fully retracted. However, it should be noted that unlike in the embodiment shown in FIGS. 1-9, the present embodiment does not rely on the ramps or slots to retract the blades. Instead, the blades 114 and 116 may be free to retract when pulled from the hole. Thus when the reamer 90 is withdrawn from the hole the blades 114 and 116 may retract by themselves as a result of engagement with the drill hole shaft or the guide tube.
  • The surgeon may visualize the degree the [0057] blades 114 and 116 extend by viewing the position of the shaft 92 relative to the barrel 102, through view port 107. The shaft 92 may have markings or surface features to make such position determinations easier. In the embodiment shown, the surgeon can see how far down the shaft 92 moves as the turning wheel 96 is rotated. The reamer 90 may be calibrated to show the distance the blades project from the tool.
  • While this invention may be embodied in many different forms, there are shown in the drawings and described in detail herein specific preferred embodiments of the invention. The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated. [0058]
  • This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto. [0059]

Claims (14)

What is claimed is:
1. An expandable reamer comprising:
a) an elongated hollow shaft having a proximal and a distal end, the distal end being closed and having a pair of opposing side openings adjacent the closed end;
b) a pair of internal blade members within said hollow shaft;
c) a mechanism for moving said blades from a retracted position within the shaft to a cutting, extended position through said side openings.
2. The expandable reamer of
claim 1
wherein said distal closed end includes an inner, centrally located wedge constructed and arranged to direct the internal blade members out of said side openings when pressed distally.
3. The expandable reamer of
claim 2
wherein said internal blade members each include an elongated shaft having a distal and a proximal end, said proximal end extending up to said blade moving mechanism and a cutting blade on a distal end of said elongated shaft which are completely within said hollow shaft until said elongated shafts are urged distally by said blade moving mechanism.
4. The expandable reamer of
claim 3
wherein said blade moving mechanism is constructed and arranged to engage said proximal end of said blade member elongated shaft and simultaneously move both blades distally or proximally in response to operator movement of said blade moving mechanism.
5. The expandable reamer of
claim 4
wherein said blade moving mechanism includes an adjusting screw which when rotated causes said blades to move distally or proximally in said elongated hollow tube in response to the direction of rotation and degree of rotation.
6. The expandable reamer of
claim 5
further including an indicator mechanism toward the proximal end of said reamer which is visible from the outside of said reamer and shows relative movement of said blades proximally and distally within said hollow shaft to indicate position of the cutting blades.
7. The expandable reamer of
claim 6
wherein said reamer includes a mechanism for applying rotational torque to said hollow shaft such that said cutting blades rotate and provide a cutting operation.
8. The expandable reamer of
claim 7
wherein said cutting blades are constructed and arranged to fully retract within said hollow shaft until said blade moving mechanism urges them out said side openings such that said cutting blades are not in a cutting position until desired.
9. The expandable reamer of
claim 8
wherein said elongated shafts of said blade members are rectangular in cross-section and abut against each other within said hollow shaft to increase torsional rigidity.
10. The expandable reamer of
claim 9
wherein the proximal ends of said elongated shafts of said blade members include notches which engage with an adjustment slide of said blade moving mechanism.
11. The expandable reamer of
claim 10
wherein said adjustment slide is inserted through a side access port which is covered by a locking cover.
12. The expandable reamer of
claim 11
wherein said blade members are spring steel and constructed and arranged to have a slip fit within the hollow shaft such that the blade members may be inserted into said hollow shaft through said side openings while limiting movement of said blade members within said shaft.
13. An expandable reamer comprising:
a) an elongated shaft having a proximal end and a distal end, a pair of blade members pivotally engaged to the distal end of the elongated shaft, a pair of elongated blade guides positioned immediately adjacent to the elongate shaft, the elongate blade guides each having a guide slot, at least a portion of each of the pair of blade members being operatively engaged to one of the guide slots;
b) an elongate hollow tube, the elongate hollow tube being disposed substantially about the elongated shaft and the pair of elongated blade guides, the elongate hollow tube being longitudinally moveable relative to the elongated shaft;
c) a handle, the handle having a hollow engagement barrel and at least one griping member extending therefrom, the hollow engagement barrel having a first end engaged to the elongate hollow tube, and a second end having a control knob, the control knob being operatively engaged to the elongate hollow tube, whereby when the control knob is rotated the elongate hollow tube is moved longitudinally relative to the elongated shaft causing the pair of blade members to move between a retracted position and an extended position.
14. An expandable reamer comprising:
a) an elongated shaft having a proximal end and a distal end, a pair of blade members being pivotally engaged to the distal end of the elongated shaft, the distal end of the elongate shaft having a pair of blade slots constructed and arranged to slidingly and removably receive at least a portion of one of the blade members:
b) an elongate hollow tube, the elongate hollow tube being disposed substantially about the elongated shaft, the elongated shaft being longitudinally moveable relative to the elongate hollow tube;
c) a turn wheel, the turn wheel operatively engaged to the proximal end of the elongated shaft and positioned proximal to the elongate hollow tube, whereby when the turn wheel is rotated the elongated shaft is moved longitudinally relative to the elongate hollow tube causing the pair of blade members to move between a retracted position and an extended position.
US09/782,176 2000-02-15 2001-02-13 Expandable reamer Ceased US6383188B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/782,176 US6383188B2 (en) 2000-02-15 2001-02-13 Expandable reamer
US10/842,057 USRE42757E1 (en) 2000-02-15 2004-05-07 Expandable reamer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18261000P 2000-02-15 2000-02-15
US09/782,176 US6383188B2 (en) 2000-02-15 2001-02-13 Expandable reamer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/842,057 Reissue USRE42757E1 (en) 2000-02-15 2004-05-07 Expandable reamer

Publications (2)

Publication Number Publication Date
US20010034526A1 true US20010034526A1 (en) 2001-10-25
US6383188B2 US6383188B2 (en) 2002-05-07

Family

ID=22669228

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/782,176 Ceased US6383188B2 (en) 2000-02-15 2001-02-13 Expandable reamer
US10/842,057 Expired - Lifetime USRE42757E1 (en) 2000-02-15 2004-05-07 Expandable reamer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/842,057 Expired - Lifetime USRE42757E1 (en) 2000-02-15 2004-05-07 Expandable reamer

Country Status (7)

Country Link
US (2) US6383188B2 (en)
EP (1) EP1255496A4 (en)
JP (1) JP2003522587A (en)
AU (2) AU3829201A (en)
CA (1) CA2400356C (en)
NZ (1) NZ520772A (en)
WO (1) WO2001060268A1 (en)

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030033017A1 (en) * 2001-06-29 2003-02-13 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US20030220646A1 (en) * 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
EP1369089A2 (en) * 2002-05-23 2003-12-10 Zimmer Technology, Inc. Apparatus for reducing femoral fractures
EP1346694A3 (en) * 2002-03-19 2004-01-02 DePuy AcroMed, Inc. Vertebral endplate milling device
US6736821B2 (en) * 2002-06-18 2004-05-18 Sdgi Holdings, Inc. System and method of mating implants and vertebral bodies
US6814734B2 (en) 2001-06-18 2004-11-09 Sdgi Holdings, Inc, Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US20040267267A1 (en) * 2003-06-25 2004-12-30 Daniels David Wayne Non-linear reamer for bone preparation and associated method
EP1567069A1 (en) * 2002-11-08 2005-08-31 SDGI Holdings, Inc. Transpedicular intervertebral disk access methods and devices
US20050203508A1 (en) * 2000-03-07 2005-09-15 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US20060030856A1 (en) * 2004-07-21 2006-02-09 Sdgi Holding, Inc. Dual distractor inserter
US20060052788A1 (en) * 2003-02-04 2006-03-09 Thelen Sarah L Expandable fixation devices for minimally invasive surgery
US20060064164A1 (en) * 2000-03-07 2006-03-23 Thelen Sarah L Method and apparatus for reducing femoral fractures
US20060074427A1 (en) * 2002-12-27 2006-04-06 Lieberman Isador H Articulatable apparatus for cutting bone
US20060106380A1 (en) * 2003-10-21 2006-05-18 Innovative Spinal Technologies Extension for use with stabilization systems for internal structures
US20060149268A1 (en) * 2004-11-19 2006-07-06 Csaba Truckai Bone treatment systems and methods
US20060195109A1 (en) * 2000-02-22 2006-08-31 Mcgahan Thomas V Instruments and techniques for disc space preparation
US20060229624A1 (en) * 2005-03-31 2006-10-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US20060229625A1 (en) * 2004-11-10 2006-10-12 Csaba Truckai Bone treatment systems and methods
WO2007003243A1 (en) * 2005-07-05 2007-01-11 Plus Orthopedics Ag Bone cutter
US20070149974A1 (en) * 2003-10-09 2007-06-28 Paolo Mangione Device and method for sectioning a vertebral lamina
WO2007075152A1 (en) * 2005-06-16 2007-07-05 Warsaw Orthopedic, Inc. Minimally invasive instruments and methods for preparing vertebral endplates
FR2898484A1 (en) * 2006-03-16 2007-09-21 Fournitures Hospitalieres Ind Bone drill has shaft attached to section of larger diameter fixed to transverse handle, allowing it to be turned, two blades being mounted transversely near tip of shaft, so that they produce cylindrical hole when drill is turned
US20070276391A1 (en) * 2002-12-12 2007-11-29 William Graves Bone resection device
US20070276396A1 (en) * 2006-05-10 2007-11-29 Howmedica Osteonics Corp. Modular acetabular reamer
US20080177294A1 (en) * 2006-10-16 2008-07-24 Depuy Spine, Inc. Expandable intervertebral tool system and method
US7429264B2 (en) 2004-06-15 2008-09-30 Warsaw Orthopedic, Inc. Minimally invasive deployable cutting instrument
US20080294168A1 (en) * 2007-05-23 2008-11-27 Stryker Trauma Gmbh Reaming device
EP1987786A3 (en) * 2007-05-02 2008-12-10 Arthrex, Inc. Flip retrograde cutting instrument
US20090171359A1 (en) * 2007-05-02 2009-07-02 Jerry Sterrett Combined flip cutter and drill
US7588588B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies System and method for stabilizing of internal structures
US20090234457A1 (en) * 2001-06-29 2009-09-17 The Regents Of The University Of California Systems, devices and methods for treatment of intervertebral disorders
US20090275950A1 (en) * 2007-05-02 2009-11-05 Arthrex, Inc. Flip retrograde cutting instrument
WO2009152272A1 (en) * 2008-06-10 2009-12-17 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US20100023010A1 (en) * 2005-05-18 2010-01-28 Nelson Charles L Fracture fixation device, tools and methods
WO2010013027A1 (en) 2008-07-29 2010-02-04 Depuy International Ltd An instrument for forming a cavity within a bone
US20100076442A1 (en) * 2008-09-23 2010-03-25 Ping Xie Device for shaping object with a profile of at least a partial sphere
US20100137923A1 (en) * 2005-11-10 2010-06-03 Zimmer, Inc. Minimally invasive orthopaedic delivery devices and tools
US20100268238A1 (en) * 2009-04-17 2010-10-21 Arthrosurface Incorporated Glenoid Resurfacing System and Method
US20100286696A1 (en) * 2003-12-30 2010-11-11 Depuy Products, Inc. Minimally Invasive Bone Miller Apparatus
US20110054532A1 (en) * 2007-07-03 2011-03-03 Alexandre De Moura Interspinous mesh
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US7909825B2 (en) 2006-11-22 2011-03-22 Sonoma Orthepedic Products, Inc. Fracture fixation device, tools and methods
US7914545B2 (en) * 2002-12-03 2011-03-29 Arthrosurface, Inc System and method for retrograde procedure
US7931689B2 (en) 2000-02-28 2011-04-26 Spineology Inc. Method and apparatus for treating a vertebral body
US20110106186A1 (en) * 2009-11-02 2011-05-05 Nikolaj Wolfson Bone fragment extraction
US7942875B2 (en) 2005-05-18 2011-05-17 Sonoma Orthopedic Products, Inc. Methods of using minimally invasive actuable bone fixation devices
US7967826B2 (en) 2003-10-21 2011-06-28 Theken Spine, Llc Connector transfer tool for internal structure stabilization systems
US8034088B2 (en) * 2004-02-12 2011-10-11 Warsaw Orthopedic, Inc. Surgical instrumentation and method for treatment of a spinal structure
US8147559B2 (en) 2000-05-01 2012-04-03 Arthrosurface Incorporated System and method for joint resurface repair
US8167882B2 (en) 2008-09-30 2012-05-01 Depuy Products, Inc. Minimally invasive bone miller apparatus
US20120109229A1 (en) * 2009-07-10 2012-05-03 Milux Holdind Sa Hip joint instrument and method
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US20120165828A1 (en) * 2010-12-22 2012-06-28 Intuitive Surgical Operations, Inc. Alternate instrument removal
US8361159B2 (en) 2002-12-03 2013-01-29 Arthrosurface, Inc. System for articular surface replacement
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US8419799B2 (en) 2003-06-25 2013-04-16 Depuy Products, Inc. Assembly tool for modular implants and associated method
US20130197590A1 (en) * 2010-11-03 2013-08-01 Zyga Technology, Inc. Sacroiliac fusion system
US20130226181A1 (en) * 2010-01-04 2013-08-29 Zyga Technology, Inc. Sacroiliac fusion system
US8523872B2 (en) 2002-12-03 2013-09-03 Arthrosurface Incorporated Tibial resurfacing system
US8540717B2 (en) 2000-05-01 2013-09-24 Arthrosurface Incorporated System and method for joint resurface repair
US8556902B2 (en) 2002-12-03 2013-10-15 Arthrosurface Incorporated System and method for retrograde procedure
US20130282013A1 (en) * 2009-02-23 2013-10-24 Glen Brian Landes Discectomy Instrument
US8597298B2 (en) 2006-09-29 2013-12-03 DePuy Synthes Products, LLC Proximal reamer
US8663230B2 (en) 2002-12-03 2014-03-04 Arthrosurface Incorporated Retrograde delivery of resurfacing devices
US8685036B2 (en) 2003-06-25 2014-04-01 Michael C. Jones Assembly tool for modular implants and associated method
US8790346B2 (en) 2003-06-25 2014-07-29 DePuy Synthes Products, LLC Modular tapered reamer for bone preparation and associated method
US20140257297A1 (en) * 2013-03-08 2014-09-11 Arthrex, Inc. Expandable reamer
US8906022B2 (en) 2010-03-08 2014-12-09 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US8961518B2 (en) 2010-01-20 2015-02-24 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US8961516B2 (en) 2005-05-18 2015-02-24 Sonoma Orthopedic Products, Inc. Straight intramedullary fracture fixation devices and methods
US8961614B2 (en) 2004-11-22 2015-02-24 Arthrosurface, Inc. Articular surface implant and delivery system
US20150080897A1 (en) * 2010-03-18 2015-03-19 Facsecure, Llc Cortical, anti-migration, facet dowel for fusion of facet joints in the spine and devices for setting the same in place
US8986307B2 (en) 2012-07-10 2015-03-24 X-Spine Systems, Inc. Surgical instrument with pivotable implant holder
US8998919B2 (en) 2003-06-25 2015-04-07 DePuy Synthes Products, LLC Assembly tool for modular implants, kit and associated method
US9055955B2 (en) 2000-05-01 2015-06-16 Arthrosurface Inc. Bone resurfacing system and method
US9060820B2 (en) 2005-05-18 2015-06-23 Sonoma Orthopedic Products, Inc. Segmented intramedullary fracture fixation devices and methods
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
US9095452B2 (en) 2010-09-01 2015-08-04 DePuy Synthes Products, Inc. Disassembly tool
US9101495B2 (en) 2010-06-15 2015-08-11 DePuy Synthes Products, Inc. Spiral assembly tool
US9119601B2 (en) 2007-10-31 2015-09-01 DePuy Synthes Products, Inc. Modular taper assembly device
US9155574B2 (en) 2006-05-17 2015-10-13 Sonoma Orthopedic Products, Inc. Bone fixation device, tools and methods
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US20150359544A1 (en) * 2014-06-12 2015-12-17 Limacorporate S.P.A. Instrument for the removal of a bone insert and corresponding method
US20160135964A1 (en) * 2009-07-10 2016-05-19 Peter Forsell Hip joint instrument and method
US9358029B2 (en) 2006-12-11 2016-06-07 Arthrosurface Incorporated Retrograde resection apparatus and method
US9357989B2 (en) 2000-05-01 2016-06-07 Arthrosurface Incorporated System and method for joint resurface repair
US20160166262A1 (en) * 2010-02-18 2016-06-16 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
US20160270798A1 (en) * 2009-07-10 2016-09-22 Peter Forsell Hip joint instrument and method
US9468448B2 (en) 2012-07-03 2016-10-18 Arthrosurface Incorporated System and method for joint resurfacing and repair
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US9504578B2 (en) 2011-04-06 2016-11-29 Depuy Synthes Products, Inc Revision hip prosthesis having an implantable distal stem component
US9517093B2 (en) 2008-01-14 2016-12-13 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US9629646B2 (en) 2012-07-11 2017-04-25 Jens Kather Curved burr surgical instrument
US9662126B2 (en) 2009-04-17 2017-05-30 Arthrosurface Incorporated Glenoid resurfacing system and method
US9717545B2 (en) 2007-10-30 2017-08-01 DePuy Synthes Products, Inc. Taper disengagement tool
US9730739B2 (en) 2010-01-15 2017-08-15 Conventus Orthopaedics, Inc. Rotary-rigid orthopaedic rod
US9770278B2 (en) 2014-01-17 2017-09-26 Arthrex, Inc. Dual tip guide wire
US9814499B2 (en) 2014-09-30 2017-11-14 Arthrex, Inc. Intramedullary fracture fixation devices and methods
US9861492B2 (en) 2014-03-07 2018-01-09 Arthrosurface Incorporated Anchor for an implant assembly
US10022132B2 (en) 2013-12-12 2018-07-17 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US10045803B2 (en) 2014-07-03 2018-08-14 Mayo Foundation For Medical Education And Research Sacroiliac joint fusion screw and method
CN108670329A (en) * 2018-06-22 2018-10-19 王志荣 A kind of terminal plate of vertebral body processing unit
US10271859B2 (en) 2014-01-09 2019-04-30 Rti Surgical, Inc. Undercutting system for use in conjunction with sacroiliac fusion
USRE47427E1 (en) 1999-01-27 2019-06-11 Medtronic Holding Company Sárl Expandable intervertebral spacer
CN110090061A (en) * 2018-01-30 2019-08-06 东尼尔公司 Surgery bone prepares instrument and the component including this instrument
US10413332B2 (en) 2016-04-25 2019-09-17 Imds Llc Joint fusion implant and methods
US20190374233A1 (en) * 2018-06-06 2019-12-12 Acumed Llc Orthopedic reamer with expandable cutting head
US10603177B2 (en) 2016-04-25 2020-03-31 Imds Llc Joint fusion instrumentation and methods
US10624752B2 (en) 2006-07-17 2020-04-21 Arthrosurface Incorporated Tibial resurfacing system and method
US10624748B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10945743B2 (en) 2009-04-17 2021-03-16 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
US10952872B2 (en) * 2014-06-12 2021-03-23 Limacorporate S.P.A. Instrument for the removal of a bone insert and corresponding method
US20210244422A1 (en) * 2010-07-02 2021-08-12 Agnovos Healthcare, Llc Methods of treating degenerative bone conditions
CN113491559A (en) * 2021-07-26 2021-10-12 二零二零(北京)医疗科技有限公司 Medical reamer
US11160663B2 (en) 2017-08-04 2021-11-02 Arthrosurface Incorporated Multicomponent articular surface implant
US11202639B2 (en) 2007-05-02 2021-12-21 Arthrex, Inc. Combined flip cutter and drill
US11207080B2 (en) * 2017-06-12 2021-12-28 Conmed Corporation Orthopedic drill bit with swiveling head
WO2022174560A1 (en) * 2021-02-20 2022-08-25 山东冠龙医疗用品有限公司 Expandable intervertebral disc endplate unilateral scraping processor
US11478358B2 (en) 2019-03-12 2022-10-25 Arthrosurface Incorporated Humeral and glenoid articular surface implant systems and methods
US11607319B2 (en) 2014-03-07 2023-03-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US11712276B2 (en) 2011-12-22 2023-08-01 Arthrosurface Incorporated System and method for bone fixation

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL128261A0 (en) * 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
US20070282443A1 (en) * 1997-03-07 2007-12-06 Disc-O-Tech Medical Technologies Ltd. Expandable element
US6440138B1 (en) * 1998-04-06 2002-08-27 Kyphon Inc. Structures and methods for creating cavities in interior body regions
GB9926564D0 (en) * 1999-11-10 2000-01-12 Depuy Int Ltd Bone resection device
US7641657B2 (en) 2003-06-10 2010-01-05 Trans1, Inc. Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
US6740090B1 (en) * 2000-02-16 2004-05-25 Trans1 Inc. Methods and apparatus for forming shaped axial bores through spinal vertebrae
ATE398423T1 (en) 2000-02-16 2008-07-15 Trans1 Inc DEVICE FOR SPINAL DISTRACTION AND FUSION
US7727263B2 (en) 2000-02-16 2010-06-01 Trans1, Inc. Articulating spinal implant
US7632274B2 (en) * 2000-02-16 2009-12-15 Trans1 Inc. Thin cutter blades with retaining film for preparing intervertebral disc spaces
US7547324B2 (en) * 2000-02-16 2009-06-16 Trans1, Inc. Spinal mobility preservation apparatus having an expandable membrane
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US6575979B1 (en) * 2000-02-16 2003-06-10 Axiamed, Inc. Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
US20070260270A1 (en) * 2000-02-16 2007-11-08 Trans1 Inc. Cutter for preparing intervertebral disc space
US7713305B2 (en) 2000-05-01 2010-05-11 Arthrosurface, Inc. Articular surface implant
US7618462B2 (en) * 2000-05-01 2009-11-17 Arthrosurface Incorporated System and method for joint resurface repair
US20080086133A1 (en) * 2003-05-16 2008-04-10 Spineology Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
CA2419196A1 (en) * 2000-08-11 2002-02-21 Sdgi Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US7114501B2 (en) * 2000-08-14 2006-10-03 Spine Wave, Inc. Transverse cavity device and method
US6679886B2 (en) * 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
US7547307B2 (en) * 2001-02-27 2009-06-16 Smith & Nephew, Inc. Computer assisted knee arthroplasty instrumentation, systems, and processes
US6746451B2 (en) * 2001-06-01 2004-06-08 Lance M. Middleton Tissue cavitation device and method
JP4387611B2 (en) * 2001-06-07 2009-12-16 富士通マイクロエレクトロニクス株式会社 Drawing apparatus and drawing method
CN1835720B (en) * 2001-07-25 2011-09-28 Disc整形外科技术股份有限公司 Deformable tools and implants
US6783533B2 (en) * 2001-11-21 2004-08-31 Sythes Ag Chur Attachable/detachable reaming head for surgical reamer
US6761723B2 (en) * 2002-01-14 2004-07-13 Dynamic Spine, Inc. Apparatus and method for performing spinal surgery
US6726690B2 (en) * 2002-01-17 2004-04-27 Concept Matrix, Llc Diskectomy instrument and method
US7699849B2 (en) * 2002-01-17 2010-04-20 Concept Matrix, Llc Diskectomy instrument with disposable blade head
WO2003068090A1 (en) * 2002-02-11 2003-08-21 Smith & Nephew, Inc. Image-guided fracture reduction
FI113616B (en) * 2002-04-22 2004-05-31 Inion Ltd Instrument
GB0210362D0 (en) * 2002-05-07 2002-06-12 Depuy Int Ltd Assembly for use in orthopaedic surgery
GB0210363D0 (en) * 2002-05-07 2002-06-12 Depuy Int Ltd Assembly for use in orthopaedic surgery
US6918914B2 (en) * 2002-10-10 2005-07-19 Clayton T. Bauer Minimally invasive adjustable acetubular reamer
US7828804B2 (en) * 2002-11-08 2010-11-09 Warsaw Orthopedic, Inc. Transpedicular intervertebral disk access methods and devices
KR200306716Y1 (en) * 2002-11-29 2003-03-11 (주)오티스바이오텍 Apparatus operating backbone
US7776042B2 (en) * 2002-12-03 2010-08-17 Trans1 Inc. Methods and apparatus for provision of therapy to adjacent motion segments
EP1614403B2 (en) 2003-03-14 2014-06-18 Depuy Spine, Inc. Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
US7674265B2 (en) * 2003-04-24 2010-03-09 Warsaw Orthopedic, Inc. Minimally invasive instruments and methods for preparing vertebral endplates
TW587932B (en) * 2003-05-21 2004-05-21 Guan-Gu Lin Removable animal tissue filling device
US20050021037A1 (en) * 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
US8415407B2 (en) 2004-03-21 2013-04-09 Depuy Spine, Inc. Methods, materials, and apparatus for treating bone and other tissue
WO2006011152A2 (en) 2004-06-17 2006-02-02 Disc-O-Tech Medical Technologies, Ltd. Methods for treating bone and other tissue
EP1651150B1 (en) * 2003-08-07 2021-03-24 Dynamic Spine, Inc. Intervertebral prosthetic device and associated devices and methods for implanting the intervertebral prosthetic device
US20050131417A1 (en) * 2003-08-22 2005-06-16 Ahern James W. Kit for treating bony defects
US8579908B2 (en) 2003-09-26 2013-11-12 DePuy Synthes Products, LLC. Device for delivering viscous material
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
EP1673026A2 (en) * 2003-10-06 2006-06-28 Smith & Nephew, Inc. Modular navigated portal
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
EP1691848B1 (en) 2003-10-23 2012-08-22 TRANS1, Inc. Tools and tool kits for performing minimally invasive procedures on the spine
WO2005048851A1 (en) * 2003-11-14 2005-06-02 Smith & Nephew, Inc. Adjustable surgical cutting systems
US7951163B2 (en) * 2003-11-20 2011-05-31 Arthrosurface, Inc. Retrograde excision system and apparatus
US20050113836A1 (en) * 2003-11-25 2005-05-26 Lozier Antony J. Expandable reamer
JP2007523696A (en) * 2004-01-16 2007-08-23 スミス アンド ネフュー インコーポレーテッド Computer-aided ligament balancing in total knee arthroplasty
US20050165487A1 (en) * 2004-01-28 2005-07-28 Muhanna Nabil L. Artificial intervertebral disc
EP1570813A1 (en) * 2004-03-05 2005-09-07 Cervitech, Inc. Cervical intervertebral disc prosthesis with anti-luxation means, and instrument
US7959634B2 (en) * 2004-03-29 2011-06-14 Soteira Inc. Orthopedic surgery access devices
WO2005104978A1 (en) 2004-04-21 2005-11-10 Smith & Nephew, Inc. Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US20050261692A1 (en) * 2004-05-21 2005-11-24 Scimed Life Systems, Inc. Articulating tissue removal probe and methods of using the same
US8142462B2 (en) * 2004-05-28 2012-03-27 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US20050278023A1 (en) * 2004-06-10 2005-12-15 Zwirkoski Paul A Method and apparatus for filling a cavity
US7549993B2 (en) * 2004-06-16 2009-06-23 Warsaw Orthopedic, Inc. Constant lift cam spreader
WO2006002430A2 (en) * 2004-06-16 2006-01-05 Sdgi Holdings, Inc. Surgical instrumentation for the repair of vertebral bodies
US7632275B2 (en) * 2004-07-01 2009-12-15 Howmedica Osteonics Corp. Orthopedic reamer
DE202004019105U1 (en) * 2004-12-10 2005-02-24 Stryker Trauma Gmbh Device for clearing bone cavities
US8628534B2 (en) 2005-02-02 2014-01-14 DePuy Synthes Products, LLC Ultrasonic cutting device
JP2008531091A (en) 2005-02-22 2008-08-14 スミス アンド ネフュー インコーポレーテッド In-line milling system
EP2319439B1 (en) 2005-02-22 2017-07-26 DePuy Spine, Inc. Materials for treating bone
JP2008531109A (en) 2005-02-22 2008-08-14 ディスク−オー−テック メディカル テクノロジーズ, リミテッド Methods, materials, and devices for treating bone and other tissues
US20060241629A1 (en) * 2005-04-07 2006-10-26 Zimmer Technology, Inc. Expandable reamer
US20060276797A1 (en) * 2005-05-24 2006-12-07 Gary Botimer Expandable reaming device
EP1919375A1 (en) * 2005-05-24 2008-05-14 Gary Botimer Expandable surgical reaming tool
US7927376B2 (en) * 2005-06-30 2011-04-19 Depuy Products, Inc. Expandable acetabular liner extraction device, cup assembly and associated method
US7785331B2 (en) * 2005-06-30 2010-08-31 Depuy Products, Inc. Acetabular liner extraction device, kit and associated method
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
IL174347A0 (en) 2005-07-31 2006-08-20 Disc O Tech Medical Tech Ltd Bone cement and methods of use thereof
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
CN100340215C (en) * 2005-09-19 2007-10-03 吴乃庆 Bone dilator
US20070123889A1 (en) * 2005-10-14 2007-05-31 Malandain Hugues F Mechanical cavity-creation surgical device and methods and kits for using such devices
US7799035B2 (en) * 2005-11-18 2010-09-21 Carefusion 2200, Inc. Device, system and method for delivering a curable material into bone
USD669168S1 (en) 2005-11-18 2012-10-16 Carefusion 2200, Inc. Vertebral augmentation needle
US7713273B2 (en) * 2005-11-18 2010-05-11 Carefusion 2200, Inc. Device, system and method for delivering a curable material into bone
US8690884B2 (en) 2005-11-18 2014-04-08 Carefusion 2200, Inc. Multistate-curvature device and method for delivering a curable material into bone
US8360629B2 (en) 2005-11-22 2013-01-29 Depuy Spine, Inc. Mixing apparatus having central and planetary mixing elements
CN101978936A (en) 2005-11-23 2011-02-23 十字桅杆药品公司 Devices and methods for the treatment of bone fracture
US20080033466A1 (en) * 2006-02-28 2008-02-07 Trans1 Inc. Surgical cutter with exchangeable cutter blades
CN101516412B (en) 2006-09-14 2014-02-12 德普伊斯派尔公司 Bone cement and use method thereof
AU2007311451A1 (en) 2006-10-19 2008-04-24 Depuy Spine, Inc. Fluid delivery system
IL181211A0 (en) * 2007-02-07 2007-07-04 Nmb Medical Applic Ltd Device and methods for strengthening long bones
US8556897B2 (en) * 2007-02-09 2013-10-15 Christopher G. Sidebotham Modular spherical hollow reamer assembly for medical applications
AU2008216160A1 (en) * 2007-02-14 2008-08-21 Arthrosurface Incorporated Bone cement delivery device
GB0702948D0 (en) 2007-02-15 2007-03-28 Depuy Int Ltd A tool for forming a cavity within a bone
US20090054898A1 (en) * 2007-03-26 2009-02-26 Joe Gleason Articulating Shaper
US7935117B2 (en) * 2007-05-02 2011-05-03 Depuy Products, Inc. Expandable proximal reamer
US20080275448A1 (en) 2007-05-02 2008-11-06 Sackett Samuel G Expandable proximal reamer
US8591514B2 (en) * 2007-05-02 2013-11-26 Arthrex, Inc. Retrograde cutter with rotating blade
WO2008139456A2 (en) * 2007-05-10 2008-11-20 Disc-O-Tech Medical Technologies, Ltd Expandable intramedullary nail for small bone fixation
CA2692002A1 (en) * 2007-05-21 2008-11-27 Aoi Medical Inc. Articulating cavitation device
CA2694558C (en) * 2007-07-25 2014-06-03 Depuy Spine, Inc. Expandable bone filler materials and methods of using same
US8328818B1 (en) * 2007-08-31 2012-12-11 Globus Medical, Inc. Devices and methods for treating bone
US9066732B2 (en) * 2007-09-14 2015-06-30 Crosstrees Medical, Inc. Method and apparatus for bone removal
US9510885B2 (en) 2007-11-16 2016-12-06 Osseon Llc Steerable and curvable cavity creation system
US20090131886A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system
US20090131867A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system with cavity creation element
US20090149878A1 (en) * 2007-12-07 2009-06-11 Csaba Truckai Bone treatment systems and methods
US20090177206A1 (en) * 2008-01-08 2009-07-09 Zimmer Spine, Inc. Instruments, implants, and methods for fixation of vertebral compression fractures
ES2350988B1 (en) * 2008-04-03 2011-11-22 Agusti ALBIOL LLORACH SYSTEM FOR THE PRACTICE OF OSTEOTOMY.
ES2351563B1 (en) * 2008-11-04 2011-12-30 Agusti ALBIOL LLORACH IMPROVEMENTS IN PATENT P200800991 PER SYSTEM FOR THE PRACTICE OF OSTEOTOMY.
US20090254092A1 (en) * 2008-04-03 2009-10-08 Albiol Llorach Agusti Cutting apparatus for performing osteotomy
US8277506B2 (en) 2008-06-24 2012-10-02 Carefusion 2200, Inc. Method and structure for stabilizing a vertebral body
US8246627B2 (en) * 2008-08-07 2012-08-21 Stryker Corporation Cement delivery device for introducing cement into tissue, the device having a cavity creator
WO2010094032A2 (en) 2009-02-16 2010-08-19 Aoi Medical Inc. Trauma nail accumulator
US20100298832A1 (en) 2009-05-20 2010-11-25 Osseon Therapeutics, Inc. Steerable curvable vertebroplasty drill
KR20120047231A (en) * 2009-06-17 2012-05-11 트리니티 올쏘피딕스, 엘엘씨 Expanding intervertebral device and methods of use
EP2451404B1 (en) 2009-07-09 2015-12-16 R Tree Innovations, LLC Flexible inter-body implant
US20110015635A1 (en) * 2009-07-17 2011-01-20 Aryan Henry E Apparatus and method for facilitating intervertebral arthrodesis and disc space preparation as part of treatment of spinal degenerative disease
US9232954B2 (en) 2009-08-20 2016-01-12 Howmedica Osteonics Corp. Flexible ACL instrumentation, kit and method
US8894658B2 (en) 2009-11-10 2014-11-25 Carefusion 2200, Inc. Apparatus and method for stylet-guided vertebral augmentation
US8696672B2 (en) * 2010-01-22 2014-04-15 Baxano Surgical, Inc. Abrading tool for preparing intervertebral disc spaces
US20110251616A1 (en) * 2010-04-12 2011-10-13 K2M, Inc. Expandable reamer and method of use
WO2011137377A1 (en) 2010-04-29 2011-11-03 Dfine, Inc. System for use in treatment of vertebral fractures
CN103108660A (en) 2010-07-26 2013-05-15 华沙整形外科股份有限公司 Calcium particle-embedded, snap-to-dough, high-viscosity bone cement
DE102010035832A1 (en) * 2010-08-30 2012-03-01 Spontech Spine Intelligence Group Ag Instrumentation for inserting an implant into an intervertebral disc space
US9445825B2 (en) 2011-02-10 2016-09-20 Wright Medical Technology, Inc. Expandable surgical device
JP4801225B1 (en) * 2011-03-11 2011-10-26 アリオメディカル株式会社 Cutting tools
US9795398B2 (en) 2011-04-13 2017-10-24 Howmedica Osteonics Corp. Flexible ACL instrumentation, kit and method
US9445803B2 (en) 2011-11-23 2016-09-20 Howmedica Osteonics Corp. Filamentary suture anchor
US9808242B2 (en) 2012-04-06 2017-11-07 Howmedica Osteonics Corp. Knotless filament anchor for soft tissue repair
GB201209806D0 (en) * 2012-06-01 2012-07-18 Depuy Ireland Ltd A trial instrument for use in orthopaedic surgery
US8821494B2 (en) 2012-08-03 2014-09-02 Howmedica Osteonics Corp. Surgical instruments and methods of use
US9011443B2 (en) 2012-09-20 2015-04-21 Depuy Mitek, Llc Low profile reamers and methods of use
US9078740B2 (en) 2013-01-21 2015-07-14 Howmedica Osteonics Corp. Instrumentation and method for positioning and securing a graft
US9402620B2 (en) 2013-03-04 2016-08-02 Howmedica Osteonics Corp. Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use
US9913728B2 (en) 2013-03-14 2018-03-13 Quandary Medical, Llc Spinal implants and implantation system
US10292694B2 (en) 2013-04-22 2019-05-21 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone
CN108670349B (en) 2013-04-24 2021-06-04 Tag医疗器材农业合作有限公司 Device and method for bone material removal
US9393057B2 (en) 2013-10-08 2016-07-19 Pioneer Surgical Technology, Inc. Surgical system and method
CA2927436C (en) 2013-10-15 2022-04-26 Stryker Corporation Device for creating a void space in living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle
US9980715B2 (en) 2014-02-05 2018-05-29 Trinity Orthopedics, Llc Anchor devices and methods of use
US9603607B2 (en) 2014-03-11 2017-03-28 Lenkbar, Llc Reaming instrument with adjustable profile
US9517076B2 (en) 2014-03-11 2016-12-13 Lenkbar, Llc Reaming instrument with adjustable profile
US9707314B2 (en) * 2014-03-26 2017-07-18 DePuy Synthes Products, Inc. Acrylic bone cement having a delayed release polymerization inhibitor such as an anti-oxidant for increased working time
US9795395B2 (en) 2014-06-10 2017-10-24 Medos International Sarl Retro-cutting instrument with adjustable limit setting
ES2950085T3 (en) 2014-10-19 2023-10-05 T A G Medical Products Corp Ltd A kit that includes a guidance system and a bone material extraction device
US9986992B2 (en) 2014-10-28 2018-06-05 Stryker Corporation Suture anchor and associated methods of use
USD778443S1 (en) * 2015-03-31 2017-02-07 James Brannon Bone coring trephine
EP3282956A4 (en) 2015-04-09 2019-01-16 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Bone material removal device and a method for use thereof
EP3195833B1 (en) * 2016-01-19 2022-01-12 K2M, Inc. Surgical instrument
WO2017137998A2 (en) 2016-02-11 2017-08-17 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Bone material removal device and a method for use thereof
US11083445B2 (en) * 2016-03-31 2021-08-10 Nextremity Solutions, Inc. Knife and retractor system
EP3448274A4 (en) 2016-04-24 2020-05-06 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Guiding device and method of using thereof
US11207081B2 (en) 2016-10-21 2021-12-28 University Of Louisville Research Foundation, Inc. Systems and methods for intramedullary preparations
JP2019534130A (en) 2016-10-27 2019-11-28 ディーファイン,インコーポレイティド Articulated osteotome with cement delivery channel
US11116570B2 (en) 2016-11-28 2021-09-14 Dfine, Inc. Tumor ablation devices and related methods
WO2018107036A1 (en) 2016-12-09 2018-06-14 Dfine, Inc. Medical devices for treating hard tissues and related methods
WO2018129180A1 (en) 2017-01-06 2018-07-12 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US10631881B2 (en) 2017-03-09 2020-04-28 Flower Orthopedics Corporation Plating depth gauge and countersink instrument
US10456145B2 (en) * 2017-05-16 2019-10-29 Arthrex, Inc. Expandable reamers
WO2018232100A1 (en) 2017-06-14 2018-12-20 Osteoagra Llc Stabilization of vertebral bodies with bone particle slurry
EP3745970B1 (en) 2018-03-06 2023-08-23 Viant AS&O Holdings, LLC Expandable reamer cutting head
CA3105930C (en) 2018-08-01 2023-01-31 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Adjustable drilling device and a method for use thereof
EP3876856A4 (en) 2018-11-08 2022-10-12 Dfine, Inc. Tumor ablation device and related systems and methods
US11234716B2 (en) 2019-02-22 2022-02-01 Globus Medical, Inc. Methods and apparatus for performing discectomy
WO2020219392A2 (en) 2019-04-24 2020-10-29 Stryker Corporation Systems and methods for off-axis augmentation of a vertebral body
WO2021195565A1 (en) * 2020-03-26 2021-09-30 Integrity Implants Inc. Controllably translatable tissue cutting devices
DE102020111483A1 (en) * 2020-04-28 2021-10-28 H & B Electronic Gmbh & Co. Kg Undercut tool

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1344327A (en) * 1916-12-20 1920-06-22 Said William W Wilson Underreamer
US1362513A (en) * 1920-04-19 1920-12-14 Charles P Skinner Underreamer
US3702611A (en) * 1971-06-23 1972-11-14 Meyer Fishbein Surgical expansive reamer for hip socket
DE2434041B2 (en) * 1974-07-16 1977-02-17 Mapal Fabrik für Präzisionswerkzeuge Dr. Kress KG, 7080 Aalen ADJUSTABLE MULTI-BLADE MACHINE REAMER
US4502554A (en) * 1982-06-02 1985-03-05 Jones Richard H Expansible tool for reaming frustoconical undercuts in cylindrical holes
US4621637A (en) * 1984-07-30 1986-11-11 Meyer Fishbein Surgical device for removing bone and tissue from joint members
US4721103A (en) * 1985-01-31 1988-01-26 Yosef Freedland Orthopedic device
US5002546A (en) * 1987-04-13 1991-03-26 Romano Jack W Curved bore drilling apparatus
US4809793A (en) * 1987-10-19 1989-03-07 Hailey Charles D Enhanced diameter clean-out tool and method
FR2624719B1 (en) * 1987-12-18 1990-05-11 Zimmer Sa DRILLING PROBE, PARTICULARLY FOR POSITIONING AND FIXING A MEDULAR NAIL
CA2007210C (en) 1989-05-10 1996-07-09 Stephen D. Kuslich Intervertebral reamer
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5174374A (en) * 1991-10-17 1992-12-29 Hailey Charles D Clean-out tool cutting blade
US5242017A (en) * 1991-12-27 1993-09-07 Hailey Charles D Cutter blades for rotary tubing tools
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5591170A (en) 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
GB2308608B (en) * 1994-10-31 1998-11-18 Red Baron The 2-stage underreamer
US5667509A (en) * 1995-03-02 1997-09-16 Westin; Craig D. Retractable shield apparatus and method for a bone drill
US5913867A (en) * 1996-12-23 1999-06-22 Smith & Nephew, Inc. Surgical instrument
US5928239A (en) 1998-03-16 1999-07-27 University Of Washington Percutaneous surgical cavitation device and method
US6224604B1 (en) * 1999-07-30 2001-05-01 Loubert Suddaby Expandable orthopedic drill for vertebral interbody fusion techniques

Cited By (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47427E1 (en) 1999-01-27 2019-06-11 Medtronic Holding Company Sárl Expandable intervertebral spacer
US8206397B2 (en) * 2000-02-22 2012-06-26 Warsaw Orthopedic Instruments and techniques for disc space preparation
US20060195109A1 (en) * 2000-02-22 2006-08-31 Mcgahan Thomas V Instruments and techniques for disc space preparation
US7931689B2 (en) 2000-02-28 2011-04-26 Spineology Inc. Method and apparatus for treating a vertebral body
US7488329B2 (en) 2000-03-07 2009-02-10 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US20060064164A1 (en) * 2000-03-07 2006-03-23 Thelen Sarah L Method and apparatus for reducing femoral fractures
US20070123995A1 (en) * 2000-03-07 2007-05-31 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US7485119B2 (en) 2000-03-07 2009-02-03 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US7258692B2 (en) 2000-03-07 2007-08-21 Zimmer, Inc. Method and apparatus for reducing femoral fractures
US20050203508A1 (en) * 2000-03-07 2005-09-15 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US9357989B2 (en) 2000-05-01 2016-06-07 Arthrosurface Incorporated System and method for joint resurface repair
US9055955B2 (en) 2000-05-01 2015-06-16 Arthrosurface Inc. Bone resurfacing system and method
US9204873B2 (en) 2000-05-01 2015-12-08 Arthrosurface Incorporated System and method for joint resurface repair
US8147559B2 (en) 2000-05-01 2012-04-03 Arthrosurface Incorporated System and method for joint resurface repair
US8864827B2 (en) 2000-05-01 2014-10-21 Arthrosurface Inc. System and method for joint resurface repair
US8540717B2 (en) 2000-05-01 2013-09-24 Arthrosurface Incorporated System and method for joint resurface repair
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US7749225B2 (en) * 2001-06-18 2010-07-06 Warsaw Orthopedic, Inc. Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US20050033303A1 (en) * 2001-06-18 2005-02-10 Chappuis James L. Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US6814734B2 (en) 2001-06-18 2004-11-09 Sdgi Holdings, Inc, Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US7156877B2 (en) 2001-06-29 2007-01-02 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US7641691B2 (en) 2001-06-29 2010-01-05 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US20090234457A1 (en) * 2001-06-29 2009-09-17 The Regents Of The University Of California Systems, devices and methods for treatment of intervertebral disorders
US20030033017A1 (en) * 2001-06-29 2003-02-13 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US20060293751A1 (en) * 2001-06-29 2006-12-28 Lotz Jeffrey C Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US6902568B2 (en) 2002-03-19 2005-06-07 Hassan Serhan Vertebral endplate milling device
EP1346694A3 (en) * 2002-03-19 2004-01-02 DePuy AcroMed, Inc. Vertebral endplate milling device
EP1369089A2 (en) * 2002-05-23 2003-12-10 Zimmer Technology, Inc. Apparatus for reducing femoral fractures
US20030220646A1 (en) * 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
EP1369089A3 (en) * 2002-05-23 2004-06-16 Zimmer Technology, Inc. Apparatus for reducing femoral fractures
US6736821B2 (en) * 2002-06-18 2004-05-18 Sdgi Holdings, Inc. System and method of mating implants and vertebral bodies
EP1567069A4 (en) * 2002-11-08 2008-11-12 Warsaw Orthopedic Inc Transpedicular intervertebral disk access methods and devices
EP1567069A1 (en) * 2002-11-08 2005-08-31 SDGI Holdings, Inc. Transpedicular intervertebral disk access methods and devices
US8556902B2 (en) 2002-12-03 2013-10-15 Arthrosurface Incorporated System and method for retrograde procedure
US7914545B2 (en) * 2002-12-03 2011-03-29 Arthrosurface, Inc System and method for retrograde procedure
US9044343B2 (en) 2002-12-03 2015-06-02 Arthrosurface Incorporated System for articular surface replacement
US8523872B2 (en) 2002-12-03 2013-09-03 Arthrosurface Incorporated Tibial resurfacing system
US8926615B2 (en) 2002-12-03 2015-01-06 Arthrosurface, Inc. System and method for retrograde procedure
US8663230B2 (en) 2002-12-03 2014-03-04 Arthrosurface Incorporated Retrograde delivery of resurfacing devices
US8361159B2 (en) 2002-12-03 2013-01-29 Arthrosurface, Inc. System for articular surface replacement
US10076343B2 (en) 2002-12-03 2018-09-18 Arthrosurface Incorporated System for articular surface replacement
US20070276391A1 (en) * 2002-12-12 2007-11-29 William Graves Bone resection device
US8277452B2 (en) * 2002-12-12 2012-10-02 Depuy International Limited Bone resection device
US20060074427A1 (en) * 2002-12-27 2006-04-06 Lieberman Isador H Articulatable apparatus for cutting bone
US7749228B2 (en) * 2002-12-27 2010-07-06 The Cleveland Clinic Foundation Articulatable apparatus for cutting bone
US20060052788A1 (en) * 2003-02-04 2006-03-09 Thelen Sarah L Expandable fixation devices for minimally invasive surgery
US9351745B2 (en) 2003-02-24 2016-05-31 Arthrosurface Incorporated Trochlear resurfacing system and method
US10624749B2 (en) 2003-02-24 2020-04-21 Arthrosurface Incorporated Trochlear resurfacing system and method
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US11337819B2 (en) 2003-02-24 2022-05-24 Arthrosurface Incorporated Trochlear resurfacing system and method
US9931211B2 (en) 2003-02-24 2018-04-03 Arthrosurface Incorporated Trochlear resurfacing system and method
US20040267267A1 (en) * 2003-06-25 2004-12-30 Daniels David Wayne Non-linear reamer for bone preparation and associated method
US8685036B2 (en) 2003-06-25 2014-04-01 Michael C. Jones Assembly tool for modular implants and associated method
US8419799B2 (en) 2003-06-25 2013-04-16 Depuy Products, Inc. Assembly tool for modular implants and associated method
US8790346B2 (en) 2003-06-25 2014-07-29 DePuy Synthes Products, LLC Modular tapered reamer for bone preparation and associated method
US9381097B2 (en) 2003-06-25 2016-07-05 DePuy Synthes Products, Inc. Assembly tool for modular implants, kit and associated method
US8998919B2 (en) 2003-06-25 2015-04-07 DePuy Synthes Products, LLC Assembly tool for modular implants, kit and associated method
US8221422B2 (en) * 2003-10-09 2012-07-17 Ldr Medical Device and method for sectioning a vertebral lamina
US20070149974A1 (en) * 2003-10-09 2007-06-28 Paolo Mangione Device and method for sectioning a vertebral lamina
US7905907B2 (en) 2003-10-21 2011-03-15 Theken Spine, Llc Internal structure stabilization system for spanning three or more structures
US7967826B2 (en) 2003-10-21 2011-06-28 Theken Spine, Llc Connector transfer tool for internal structure stabilization systems
US7588575B2 (en) * 2003-10-21 2009-09-15 Innovative Spinal Technologies Extension for use with stabilization systems for internal structures
US7588588B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies System and method for stabilizing of internal structures
US20060106380A1 (en) * 2003-10-21 2006-05-18 Innovative Spinal Technologies Extension for use with stabilization systems for internal structures
US7942879B2 (en) 2003-12-30 2011-05-17 Depuy Products, Inc. Minimally invasive bone miller apparatus
US20100286696A1 (en) * 2003-12-30 2010-11-11 Depuy Products, Inc. Minimally Invasive Bone Miller Apparatus
US8034088B2 (en) * 2004-02-12 2011-10-11 Warsaw Orthopedic, Inc. Surgical instrumentation and method for treatment of a spinal structure
US7429264B2 (en) 2004-06-15 2008-09-30 Warsaw Orthopedic, Inc. Minimally invasive deployable cutting instrument
US7625380B2 (en) 2004-07-21 2009-12-01 Warsaw Orthopedic, Inc. Dual distractor inserter
US20060030856A1 (en) * 2004-07-21 2006-02-09 Sdgi Holding, Inc. Dual distractor inserter
US7682378B2 (en) * 2004-11-10 2010-03-23 Dfine, Inc. Bone treatment systems and methods for introducing an abrading structure to abrade bone
US20060229625A1 (en) * 2004-11-10 2006-10-12 Csaba Truckai Bone treatment systems and methods
US8241335B2 (en) 2004-11-10 2012-08-14 Dfine, Inc. Bone treatment systems and methods for introducing an abrading structure to abrade bone
US8562607B2 (en) 2004-11-19 2013-10-22 Dfine, Inc. Bone treatment systems and methods
US20060149268A1 (en) * 2004-11-19 2006-07-06 Csaba Truckai Bone treatment systems and methods
US8961614B2 (en) 2004-11-22 2015-02-24 Arthrosurface, Inc. Articular surface implant and delivery system
US20060229624A1 (en) * 2005-03-31 2006-10-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US20090177202A1 (en) * 2005-03-31 2009-07-09 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US7922720B2 (en) 2005-03-31 2011-04-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US8287539B2 (en) 2005-05-18 2012-10-16 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US8287541B2 (en) 2005-05-18 2012-10-16 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US9060820B2 (en) 2005-05-18 2015-06-23 Sonoma Orthopedic Products, Inc. Segmented intramedullary fracture fixation devices and methods
US8961516B2 (en) 2005-05-18 2015-02-24 Sonoma Orthopedic Products, Inc. Straight intramedullary fracture fixation devices and methods
US20100023010A1 (en) * 2005-05-18 2010-01-28 Nelson Charles L Fracture fixation device, tools and methods
US7942875B2 (en) 2005-05-18 2011-05-17 Sonoma Orthopedic Products, Inc. Methods of using minimally invasive actuable bone fixation devices
WO2007075152A1 (en) * 2005-06-16 2007-07-05 Warsaw Orthopedic, Inc. Minimally invasive instruments and methods for preparing vertebral endplates
WO2007003243A1 (en) * 2005-07-05 2007-01-11 Plus Orthopedics Ag Bone cutter
US20100137923A1 (en) * 2005-11-10 2010-06-03 Zimmer, Inc. Minimally invasive orthopaedic delivery devices and tools
FR2898484A1 (en) * 2006-03-16 2007-09-21 Fournitures Hospitalieres Ind Bone drill has shaft attached to section of larger diameter fixed to transverse handle, allowing it to be turned, two blades being mounted transversely near tip of shaft, so that they produce cylindrical hole when drill is turned
US20070276396A1 (en) * 2006-05-10 2007-11-29 Howmedica Osteonics Corp. Modular acetabular reamer
US9155574B2 (en) 2006-05-17 2015-10-13 Sonoma Orthopedic Products, Inc. Bone fixation device, tools and methods
US11471289B2 (en) 2006-07-17 2022-10-18 Arthrosurface Incorporated Tibial resurfacing system and method
US10624752B2 (en) 2006-07-17 2020-04-21 Arthrosurface Incorporated Tibial resurfacing system and method
US8852189B2 (en) 2006-09-29 2014-10-07 DePuy Synthes Products, LLC Proximal reamer
US8852188B2 (en) 2006-09-29 2014-10-07 DePuy Synthes Products, LLC Proximal reamer
US8597298B2 (en) 2006-09-29 2013-12-03 DePuy Synthes Products, LLC Proximal reamer
US9282980B2 (en) 2006-10-16 2016-03-15 DePuy Synthes Products, Inc. Device and method for manipulating intervertebral tissue
US20080177294A1 (en) * 2006-10-16 2008-07-24 Depuy Spine, Inc. Expandable intervertebral tool system and method
US8882771B2 (en) 2006-10-16 2014-11-11 DePuy Synthes Products, LLC Method for manipulating intervertebral tissue
US8137352B2 (en) * 2006-10-16 2012-03-20 Depuy Spine, Inc. Expandable intervertebral tool system and method
US8439917B2 (en) 2006-11-22 2013-05-14 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US7909825B2 (en) 2006-11-22 2011-03-22 Sonoma Orthepedic Products, Inc. Fracture fixation device, tools and methods
US9259250B2 (en) 2006-11-22 2016-02-16 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US9358029B2 (en) 2006-12-11 2016-06-07 Arthrosurface Incorporated Retrograde resection apparatus and method
US10959740B2 (en) 2006-12-11 2021-03-30 Arthrosurface Incorporated Retrograde resection apparatus and method
US10045788B2 (en) 2006-12-11 2018-08-14 Arthrosurface Incorporated Retrograde resection apparatus and method
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US8623025B2 (en) 2006-12-15 2014-01-07 Gmedelaware 2 Llc Delivery apparatus and methods for vertebrostenting
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9526510B2 (en) 2007-05-02 2016-12-27 Arthrex, Inc. Combined flip cutter and drill
US8888781B2 (en) 2007-05-02 2014-11-18 Arthrex, Inc. Combined flip cutter and drill
US10251655B2 (en) 2007-05-02 2019-04-09 Arthrex, Inc. Combined flip cutter and drill
EP1987786A3 (en) * 2007-05-02 2008-12-10 Arthrex, Inc. Flip retrograde cutting instrument
US9101366B2 (en) * 2007-05-02 2015-08-11 Arthrex, Inc. Flip retrograde cutting instrument
US11744596B2 (en) 2007-05-02 2023-09-05 Arthrex, Inc. Retrograde cutting instrument
US20090171359A1 (en) * 2007-05-02 2009-07-02 Jerry Sterrett Combined flip cutter and drill
US20140228849A1 (en) * 2007-05-02 2014-08-14 Arthrex, Inc. Flip retrograde cutting instrument
US20090275950A1 (en) * 2007-05-02 2009-11-05 Arthrex, Inc. Flip retrograde cutting instrument
US8652139B2 (en) 2007-05-02 2014-02-18 Arthrex, Inc. Flip retrograde cutting instrument
US11202639B2 (en) 2007-05-02 2021-12-21 Arthrex, Inc. Combined flip cutter and drill
US8425518B2 (en) 2007-05-23 2013-04-23 Stryker Trauma Gmbh Reaming device
US8038679B2 (en) 2007-05-23 2011-10-18 Stryker Trauma Gmbh Reaming device
US20080294168A1 (en) * 2007-05-23 2008-11-27 Stryker Trauma Gmbh Reaming device
US20110054532A1 (en) * 2007-07-03 2011-03-03 Alexandre De Moura Interspinous mesh
US8540752B2 (en) 2007-07-03 2013-09-24 Spine Tek, Inc. Interspinous mesh
US9717545B2 (en) 2007-10-30 2017-08-01 DePuy Synthes Products, Inc. Taper disengagement tool
US9119601B2 (en) 2007-10-31 2015-09-01 DePuy Synthes Products, Inc. Modular taper assembly device
US9788870B2 (en) 2008-01-14 2017-10-17 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US9517093B2 (en) 2008-01-14 2016-12-13 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US11399878B2 (en) 2008-01-14 2022-08-02 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US10603087B2 (en) 2008-01-14 2020-03-31 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
WO2009152272A1 (en) * 2008-06-10 2009-12-17 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US9687255B2 (en) 2008-06-17 2017-06-27 Globus Medical, Inc. Device and methods for fracture reduction
US10588646B2 (en) 2008-06-17 2020-03-17 Globus Medical, Inc. Devices and methods for fracture reduction
WO2010013027A1 (en) 2008-07-29 2010-02-04 Depuy International Ltd An instrument for forming a cavity within a bone
US20110130760A1 (en) * 2008-07-29 2011-06-02 Depuy International Ltd Instrument for forming a cavity within a bone
US8771275B2 (en) * 2008-09-23 2014-07-08 Ping Xie Device for shaping object with a profile of at least a partial sphere
US20100076442A1 (en) * 2008-09-23 2010-03-25 Ping Xie Device for shaping object with a profile of at least a partial sphere
US8828003B2 (en) 2008-09-30 2014-09-09 DePuy Synthes Products, LLC Minimally invasive bone miller apparatus
US8167882B2 (en) 2008-09-30 2012-05-01 Depuy Products, Inc. Minimally invasive bone miller apparatus
US8915936B2 (en) * 2009-02-23 2014-12-23 Globus Medical, Inc. Discectomy instrument
US20130282013A1 (en) * 2009-02-23 2013-10-24 Glen Brian Landes Discectomy Instrument
US10478200B2 (en) 2009-04-17 2019-11-19 Arthrosurface Incorporated Glenoid resurfacing system and method
US11478259B2 (en) 2009-04-17 2022-10-25 Arthrosurface, Incorporated Glenoid resurfacing system and method
US10945743B2 (en) 2009-04-17 2021-03-16 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
US9283076B2 (en) 2009-04-17 2016-03-15 Arthrosurface Incorporated Glenoid resurfacing system and method
US20100268238A1 (en) * 2009-04-17 2010-10-21 Arthrosurface Incorporated Glenoid Resurfacing System and Method
US9662126B2 (en) 2009-04-17 2017-05-30 Arthrosurface Incorporated Glenoid resurfacing system and method
US20160270798A1 (en) * 2009-07-10 2016-09-22 Peter Forsell Hip joint instrument and method
US9241720B2 (en) * 2009-07-10 2016-01-26 Peter Forsell Hip joint instrument and method
US10369013B2 (en) * 2009-07-10 2019-08-06 Peter Forsell Hip joint instrument and method
US20160135964A1 (en) * 2009-07-10 2016-05-19 Peter Forsell Hip joint instrument and method
US10226259B2 (en) * 2009-07-10 2019-03-12 Peter Forsell Hip joint instrument and method
US20120109229A1 (en) * 2009-07-10 2012-05-03 Milux Holdind Sa Hip joint instrument and method
US20110106186A1 (en) * 2009-11-02 2011-05-05 Nikolaj Wolfson Bone fragment extraction
US9113919B2 (en) * 2010-01-04 2015-08-25 Zyga Technology, Inc. Sacroiliac fusion system
US10596002B2 (en) 2010-01-04 2020-03-24 Rti Surgical, Inc. Sacroiliac fusion system
US20130226181A1 (en) * 2010-01-04 2013-08-29 Zyga Technology, Inc. Sacroiliac fusion system
US11173036B2 (en) 2010-01-04 2021-11-16 Surgalign Spine Technologies, Inc. Sacroiliac fusion system
US11737882B2 (en) 2010-01-04 2023-08-29 Surgalign Spine Technologies, Inc. Sacroiliac fusion system
US9730739B2 (en) 2010-01-15 2017-08-15 Conventus Orthopaedics, Inc. Rotary-rigid orthopaedic rod
US9848889B2 (en) 2010-01-20 2017-12-26 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US8961518B2 (en) 2010-01-20 2015-02-24 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US10595884B2 (en) * 2010-02-18 2020-03-24 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
US20160166262A1 (en) * 2010-02-18 2016-06-16 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
US8906022B2 (en) 2010-03-08 2014-12-09 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US9993277B2 (en) 2010-03-08 2018-06-12 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US20150080897A1 (en) * 2010-03-18 2015-03-19 Facsecure, Llc Cortical, anti-migration, facet dowel for fusion of facet joints in the spine and devices for setting the same in place
US9101495B2 (en) 2010-06-15 2015-08-11 DePuy Synthes Products, Inc. Spiral assembly tool
US10166118B2 (en) 2010-06-15 2019-01-01 DePuy Synthes Products, Inc. Spiral assembly tool
US20210244422A1 (en) * 2010-07-02 2021-08-12 Agnovos Healthcare, Llc Methods of treating degenerative bone conditions
US9095452B2 (en) 2010-09-01 2015-08-04 DePuy Synthes Products, Inc. Disassembly tool
US10292837B2 (en) 2010-09-01 2019-05-21 Depuy Synthes Products Inc. Disassembly tool
US9867720B2 (en) 2010-09-01 2018-01-16 DePuy Synthes Products, Inc. Disassembly tool
US9149283B2 (en) * 2010-11-03 2015-10-06 Zyga Technology, Inc. Sacroiliac fusion system
US20130197590A1 (en) * 2010-11-03 2013-08-01 Zyga Technology, Inc. Sacroiliac fusion system
US11357592B2 (en) 2010-12-22 2022-06-14 Intuitive Surgical Operations, Inc. Alternate instrument removal
US20120165828A1 (en) * 2010-12-22 2012-06-28 Intuitive Surgical Operations, Inc. Alternate instrument removal
US10441376B2 (en) 2010-12-22 2019-10-15 Intuitive Surgical Operations, Inc. Alternate instrument removal
US9241766B2 (en) * 2010-12-22 2016-01-26 Intuitive Surgical Operations, Inc. Alternate instrument removal
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
US9737405B2 (en) 2011-04-06 2017-08-22 DePuy Synthes Products, Inc. Orthopaedic surgical procedure for implanting a revision hip prosthesis
US10888427B2 (en) 2011-04-06 2021-01-12 DePuy Synthes Products, Inc. Distal reamer for use during an orthopaedic surgical procedure to implant a revision hip prosthesis
US9949833B2 (en) 2011-04-06 2018-04-24 DePuy Synthes Products, Inc. Finishing RASP and orthopaedic surgical procedure for using the same to implant a revision hip prosthesis
US10925739B2 (en) 2011-04-06 2021-02-23 DePuy Synthes Products, Inc. Version-replicating instrument and orthopaedic surgical procedure for using the same to implant a revision hip prosthesis
US10772730B2 (en) 2011-04-06 2020-09-15 DePuy Synthes Products, Inc. Finishing rasp and orthopaedic surgical procedure for using the same to implant a revision hip prosthesis
US10603173B2 (en) 2011-04-06 2020-03-31 DePuy Synthes Products, Inc. Orthopaedic surgical procedure for implanting a revision hip prosthesis
US9504578B2 (en) 2011-04-06 2016-11-29 Depuy Synthes Products, Inc Revision hip prosthesis having an implantable distal stem component
US9597188B2 (en) 2011-04-06 2017-03-21 DePuy Synthes Products, Inc. Version-replicating instrument and orthopaedic surgical procedure for using the same to implant a revision hip prosthesis
US10226345B2 (en) 2011-04-06 2019-03-12 DePuy Synthes Products, Inc. Version-replicating instrument and orthopaedic surgical procedure for using the same to implant a revision hip prosthesis
US10064725B2 (en) 2011-04-06 2018-09-04 DePuy Synthes Products, Inc. Distal reamer for use during an orthopaedic surgical procedure to implant a revision hip prosthesis
US11712276B2 (en) 2011-12-22 2023-08-01 Arthrosurface Incorporated System and method for bone fixation
US10307172B2 (en) 2012-07-03 2019-06-04 Arthrosurface Incorporated System and method for joint resurfacing and repair
US11191552B2 (en) 2012-07-03 2021-12-07 Arthrosurface, Incorporated System and method for joint resurfacing and repair
US9468448B2 (en) 2012-07-03 2016-10-18 Arthrosurface Incorporated System and method for joint resurfacing and repair
US8986307B2 (en) 2012-07-10 2015-03-24 X-Spine Systems, Inc. Surgical instrument with pivotable implant holder
US9629646B2 (en) 2012-07-11 2017-04-25 Jens Kather Curved burr surgical instrument
US11517329B2 (en) 2013-03-08 2022-12-06 Arthrex, Inc. Expandable reamer
US20140257297A1 (en) * 2013-03-08 2014-09-11 Arthrex, Inc. Expandable reamer
US10499932B2 (en) * 2013-03-08 2019-12-10 Arthrex, Inc. Expandable reamer
US11648036B2 (en) 2013-04-16 2023-05-16 Arthrosurface Incorporated Suture system and method
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US10695096B2 (en) 2013-04-16 2020-06-30 Arthrosurface Incorporated Suture system and method
US10022132B2 (en) 2013-12-12 2018-07-17 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US10076342B2 (en) 2013-12-12 2018-09-18 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US10952750B2 (en) 2014-01-09 2021-03-23 Surgalign Spine Technologies, Inc. Undercutting system for use in conjunction with sacroiliac fusion
US11707285B2 (en) 2014-01-09 2023-07-25 Surgalign Spine Technologies, Inc. Undercutting system for use in conjunction with sacroiliac fusion
US10271859B2 (en) 2014-01-09 2019-04-30 Rti Surgical, Inc. Undercutting system for use in conjunction with sacroiliac fusion
US9770278B2 (en) 2014-01-17 2017-09-26 Arthrex, Inc. Dual tip guide wire
US10575957B2 (en) 2014-03-07 2020-03-03 Arthrosurface Incoporated Anchor for an implant assembly
US10624748B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US10624754B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US9861492B2 (en) 2014-03-07 2018-01-09 Arthrosurface Incorporated Anchor for an implant assembly
US11607319B2 (en) 2014-03-07 2023-03-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US9931219B2 (en) 2014-03-07 2018-04-03 Arthrosurface Incorporated Implant and anchor assembly
US9962265B2 (en) 2014-03-07 2018-05-08 Arthrosurface Incorporated System and method for repairing articular surfaces
US11766334B2 (en) 2014-03-07 2023-09-26 Arthrosurface Incorporated System and method for repairing articular surfaces
US11083587B2 (en) 2014-03-07 2021-08-10 Arthrosurface Incorporated Implant and anchor assembly
AU2019226272B2 (en) * 2014-06-12 2020-12-17 Limacorporate S.P.A. Bone Insert Removal Method
US10952872B2 (en) * 2014-06-12 2021-03-23 Limacorporate S.P.A. Instrument for the removal of a bone insert and corresponding method
US10258484B2 (en) * 2014-06-12 2019-04-16 Limacorporate S.P.A. Instrument for the removal of a bone insert and corresponding method
US20150359544A1 (en) * 2014-06-12 2015-12-17 Limacorporate S.P.A. Instrument for the removal of a bone insert and corresponding method
AU2015203033B2 (en) * 2014-06-12 2019-09-26 Limacorporate S.P.A. Instrument For The Removal of a Bone Insert and Corresponding Bone Insert Removal Method
US11357557B2 (en) 2014-07-03 2022-06-14 Mayo Foundation For Medical Education And Research Bone joint reaming tool
US10045803B2 (en) 2014-07-03 2018-08-14 Mayo Foundation For Medical Education And Research Sacroiliac joint fusion screw and method
US10548648B2 (en) 2014-09-30 2020-02-04 Arthrex, Inc. Intramedullary fracture fixation devices and methods
US9814499B2 (en) 2014-09-30 2017-11-14 Arthrex, Inc. Intramedullary fracture fixation devices and methods
US10603177B2 (en) 2016-04-25 2020-03-31 Imds Llc Joint fusion instrumentation and methods
US10751071B2 (en) 2016-04-25 2020-08-25 Imds Llc Joint fusion instrumentation and methods
US10610244B2 (en) 2016-04-25 2020-04-07 Imds Llc Joint fusion instrumentation and methods
US10413332B2 (en) 2016-04-25 2019-09-17 Imds Llc Joint fusion implant and methods
US20220110640A1 (en) * 2017-06-12 2022-04-14 Conmed Corporation Orthopedic Drill Bit with Swiveling Head
US11864776B2 (en) * 2017-06-12 2024-01-09 Conmed Corporation Orthopedic drill bit with swiveling head
US11207080B2 (en) * 2017-06-12 2021-12-28 Conmed Corporation Orthopedic drill bit with swiveling head
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US11160663B2 (en) 2017-08-04 2021-11-02 Arthrosurface Incorporated Multicomponent articular surface implant
US11234717B2 (en) * 2018-01-30 2022-02-01 Tornier Surgical bone preparation instrument and assembly comprising such an instrument
CN110090061A (en) * 2018-01-30 2019-08-06 东尼尔公司 Surgery bone prepares instrument and the component including this instrument
US11219466B2 (en) * 2018-06-06 2022-01-11 Acumed Llc Orthopedic reamer with expandable cutting head
US20190374233A1 (en) * 2018-06-06 2019-12-12 Acumed Llc Orthopedic reamer with expandable cutting head
WO2019236668A1 (en) * 2018-06-06 2019-12-12 Acumed Llc Orthopedic reamer with expandable cutting head
CN108670329A (en) * 2018-06-22 2018-10-19 王志荣 A kind of terminal plate of vertebral body processing unit
US11478358B2 (en) 2019-03-12 2022-10-25 Arthrosurface Incorporated Humeral and glenoid articular surface implant systems and methods
WO2022174560A1 (en) * 2021-02-20 2022-08-25 山东冠龙医疗用品有限公司 Expandable intervertebral disc endplate unilateral scraping processor
CN113491559A (en) * 2021-07-26 2021-10-12 二零二零(北京)医疗科技有限公司 Medical reamer

Also Published As

Publication number Publication date
CA2400356A1 (en) 2001-08-23
AU2001238292B2 (en) 2004-04-22
US6383188B2 (en) 2002-05-07
JP2003522587A (en) 2003-07-29
USRE42757E1 (en) 2011-09-27
WO2001060268A1 (en) 2001-08-23
NZ520772A (en) 2004-06-25
EP1255496A4 (en) 2006-05-17
EP1255496A1 (en) 2002-11-13
AU3829201A (en) 2001-08-27
CA2400356C (en) 2010-01-05

Similar Documents

Publication Publication Date Title
US6383188B2 (en) Expandable reamer
AU2001238292A1 (en) Expandable reamer
US11896242B2 (en) Kit including a guiding system and a bone material removal device
US7722618B2 (en) Method and instrumentation for posterior interbody fusion
US6648895B2 (en) Methods and instrumentation for vertebral interbody fusion
US6162226A (en) Long bone reamer with depth stop indicator
US6524318B1 (en) Spinal surgery instruments and methods
JP5497032B2 (en) Instruments that form cavities inside bones
US11202641B2 (en) Adjustable drilling device and a method for use thereof
JP2007516738A5 (en)
JP2002507140A (en) Freely splittable surgical drilling guides and plates
US11638596B2 (en) Reamer instruments and related methods
US20230087218A1 (en) Retrograde drilling device
JP4301944B2 (en) Intervertebral body fusion method and instrument
AU2004203352B2 (en) Expandable reamer

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPINEOLOGY GROUP, LLC, THE, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUSLICH, STEPHEN D.;PETERSON, FRANCIS;BJORK, TODD;AND OTHERS;REEL/FRAME:011803/0622;SIGNING DATES FROM 20010413 TO 20010418

AS Assignment

Owner name: SPINEOLOGY GROUP, LLC, THE, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUSLICH, STEPHEN;REEL/FRAME:012803/0260

Effective date: 20000320

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SPINEOLOGY INC., MINNESOTA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT ASSIGNEE RECORDED AT REEL 012803 FRAME 0260;ASSIGNOR:THE SPINEOLOGY GROUP LLC;REEL/FRAME:014301/0879

Effective date: 20020320

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: R1551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

RF Reissue application filed

Effective date: 20040507

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC., NEW J

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPINEOLOGY, INC.;REEL/FRAME:018563/0350

Effective date: 20061130

AS Assignment

Owner name: SPINEOLOGY, INC., MINNESOTA

Free format text: MERGER;ASSIGNOR:SPINEOLOGY GROUP, LLC;REEL/FRAME:018668/0041

Effective date: 20011130

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SPINEOLOGY, INC., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC.;REEL/FRAME:027805/0445

Effective date: 20120131

AS Assignment

Owner name: MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC., NEW J

Free format text: SECURITY AGREEMENT;ASSIGNOR:SPINEOLOGY INC;REEL/FRAME:030530/0491

Effective date: 20130530