EP1246710A1 - Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes - Google Patents

Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes

Info

Publication number
EP1246710A1
EP1246710A1 EP00967233A EP00967233A EP1246710A1 EP 1246710 A1 EP1246710 A1 EP 1246710A1 EP 00967233 A EP00967233 A EP 00967233A EP 00967233 A EP00967233 A EP 00967233A EP 1246710 A1 EP1246710 A1 EP 1246710A1
Authority
EP
European Patent Office
Prior art keywords
polymer
substrate
hot gas
gas stream
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00967233A
Other languages
German (de)
French (fr)
Other versions
EP1246710A4 (en
Inventor
Lynn David Bollinger
Iskander Tokmouline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jetek Inc
Original Assignee
Jetek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jetek Inc filed Critical Jetek Inc
Publication of EP1246710A1 publication Critical patent/EP1246710A1/en
Publication of EP1246710A4 publication Critical patent/EP1246710A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/003Scarfing, desurfacing or deburring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • This invention relates to semiconductor manufacturing generally and more specifically to a step in the process of manufacturing semiconductor devices using a hot gas stream technique.
  • Holes and trench like patterns with a very high depth to width aspect ratio with micron or sub-micron openings have a number of applications in the manufacture of semiconductors.
  • This description uses the term high aspect ratio holes to generically describe holes and trench like patterns that have a very high depth to width ratio of greater than 10 to 1.
  • Various etching methods have been developed to generate such holes in silicon. The approaches use a lithographically defined mask pattern; wet chemical etch methods that take advantage of chemical selectivity along the crystal plane; and dry, plasma etch processes, which are done at low pressure to obtain a highly directional, anisotropic etch.
  • Very high aspect ratio holes have an application in semiconductor devices and in various miniature micro-machined devices (MIMMs).
  • MIMMs miniature micro-machined devices
  • trenches for high capacitance structures with low surface area having aspect ratios of 50:1 and higher are being investigated for advanced de- signs.
  • the need for subsequent patterning after making the very high aspect ratio holes usually requires a photo- lithographically defined mask pattern be made in a photosensitive polymer such as photoresist or photosensitive polyimide. In such a step, the high aspect ratio hole is filled with the photosensitive polymer.
  • the polymer mask Following the processes that use the polymer mask pattern, the polymer mask must be stripped from the device. In some applications, it may be advantageous to remove the polymer material partially, to a controlled depth to allow processing the upper, exposed section of the hole while the remaining polymer protects the lower section in the holes.
  • a DRAM capacitor application that uses such a capability to increase the capacitor's area is described in "New Materials Enhance Memory Performance" a review by J. Baliga, Semiconductor International, November 1999, p 79-90, see p. 80.
  • an additional requirement of the polymer removal process is that the exposed surface of the device not be subject to electrical degradation.
  • Types of degradation that can occur in plasma removal processes may come from energetic species causing crystal damage or damage to a thin dielectric layer.
  • Standard methods of removing photo-polymers involve a method referred to as "ashing" in which a low pressure electrical discharge generates a plasma that creates chemically reactive oxygen species that flow to the surface to strip off the polymer and convert the polymer to volatile oxide by-products (e.g., HO x , CO x ).
  • ashing in which a low pressure electrical discharge generates a plasma that creates chemically reactive oxygen species that flow to the surface to strip off the polymer and convert the polymer to volatile oxide by-products (e.g., HO x , CO x ).
  • the flux of active oxygen species that reaches the bottom of the hole, decreases as the aspect ratio increases, with the result that the etch rate of the polymer slows dramatically.
  • HDP High Density Plasma
  • This pressure is sufficiently low so that the path length between collisions of plasma generated reactive species is sufficiently long so that reactive ions can be injected into the hole by acceleration of an electric field set-up in a boundary layer "sheath" over the surface of the substrate.
  • a problem with this HDP approach is that the energetic ion species can electrically degrade the device's electrical characteristics.
  • the prior art has used the concept of a long path length between collisions with other gas species to enable a reactive species to reach the bottom of a very high aspect ratio hole where the species can convert the polymer to volatile by products.
  • a near atmospheric pressure process that enables removal of a polymer from high aspect ratio holes, including trenches, without electrical degradation.
  • These holes in substrates may have depth to width ratios greater than 10:1 including very narrow widths that can be less than 0.1 micron.
  • a controlled, partial removal of the poy- mer from high aspect ratio holes can be done without electrical degradation of sensitive devices that may be on the substrate.
  • the polymers may be removed at relatively high rates, > 5 microns/min.
  • the polymers may be standard, photoresists or highly cross-linked polymers such as polyimide that are very difficult to remove by any standard wet or dry plasma techniques.
  • the hot gas stream typically has a smaller area than the substrate so that controlled motion of the substrate through the hot gas stream is used to uniformly remove polymer from the substrate.
  • the hot gas stream is a high tempera- ture arc type plasma that is generated in an inert gas such as argon.
  • an object of the invention to provide a technique for the removal of a polymer from a high aspect ratio hole in a semiconductor wafer or other substrate surface.
  • Figure 1 is a schematic side plan view of an apparatus showing the concept of using a hot gas stream for the removal or controlled partial removal of a polymer in accordance with the invention from high aspect ratio holes in a semi- conductor wafer substrate surface;
  • Figure 2 is a schematic side plan view of a plasma processing system that can be used to generate the needed hot gas stream
  • Figure 3 is an enlarged section view of a semiconductor wafer substrate having high aspect ratio holes covered by a polymer during manufacture
  • Figure 4 is an enlarged section view of a semiconductor wafer substrate as in Figure 2 with the polymer removed using the technique of our invention
  • Figure 5 is an enlarged section view of a semiconductor wafer substrate as in Figure 2 but with the polymer partially removed using the technique of our invention.
  • a semiconductor wafer 10 is shown mounted on a wafer holder 12.
  • a hot gas stream 14 is directed onto the substrate or wafer surface.
  • the wafer 10 is held in an upside down position with the ass ⁇ - tance of a negative pressure from a flow of gas such as nitrogen.
  • the wafer holder 12 and technique for retaining a wafer can be as described in a C ⁇ pending provisional patent application entitled "Wafer Holder For Rotating and Translating Wafers For Processing In An Atmospheric plasma System With Control Of Wafer Holder Temperature” filed on October 12, 1999 bearing Serial No. 60/158,892 by the same inventors and owner as for this patent application and which provisional application is fully incorporated herein by reference thereto.
  • an atmospheric hot gas stream 14 is generated with an apparatus 16 within a sealed chamber 13.
  • the atmospheric plasma generating system 16 often referred to as a plasma jet, has previously been described, see US patent 6,040,548, by Siniaguine, entitled “Apparatus for generating and deflecting a plasma jet". Additional improvements to the apparatus de- scribed in U.S. Patent 6,040,548 for this polymer removal application are described and referenced in the description of this application.
  • the apparatus 16 uses a high temperature, arc type plasma generated in an inert gas such as argon between two electrode subassemblies 18, 20 that serve as a cathode and anode for the arc discharge 22.
  • an inert gas such as argon
  • the arc 22 formed by the electrode configuration creates the stream 14 of hot gas to the substrate surface 28.
  • the substrate or wafer 10 to be processed is moved through the treatment area formed by the hot gas stream 14 using a suitable actuator that is not shown.
  • Other suitable ambient gases may be employed inside the sealed chamber 13.
  • a gas injector 26 may be used to inject a gas such as oxygen or a mixture of gasses directly into the hot gas stream.
  • a gas such as oxygen or a mixture of gasses directly into the hot gas stream.
  • the hot gas stream is composed primarily of the inert gas from the two electrode assemblies and from the process chamber 13 ambient gas that is entrained into the hot gas stream.
  • the temperature of the gas stream at the hydrodynamic gas boundary over the wafer surface 28 may typically be approximately 8,000°C. This temperature may be controlled by controlling the distance of the electrode assemblies 18 20 from the substrate 10 and the power into the arc type plasma. Typical power parameters for driving the arc plasma are approximately 150 V and 80 A.
  • the size of the treatment area generally denoted as A, where the stream 14 is incident upon the substrate surface 28, is approximately 2 cm diameter, normally less than the size of the substrate 10 to be processed (e.g., a 200 mm diameter silicon wafer). Consequently, the entire substrate surface 28 is treated by multiple passes of the wafer 10 through the treatment area using a motion configuration that provides for treatment over the full wafer area.
  • the relative motion of the wafer with respect to the treatment area is programmed so that uniform treatment can be obtained. Motion configurations can be by way of step and scan or by way of rotation with translation of wafer 10.
  • the depth of polymer removed from a local area of a substrate as it passes through the hot gas stream depends on the time that the area spends in the hot gas stream and, consequently, on the velocity of that local area through the gas stream. For example, if a rotation and translation motion configuration is used with a constant rotational velocity, a local area of the wafer has a rotational velocity that increases with radial distance R from the center of rotation. To achieve uniform polymer removal over the full substrate, the translation velocity of the wafer through the hot gas stream must then be a function of distance from the center of rotation to account for this increase in radial velocity. To a first ap- proximation, the translation velocity will have a 1/R dependence.
  • the programmed velocity may be adjusted in an iterative procedure based on a measurement after a partial polymer removal that gives a mapping of the vara- tion of the thickness of the polymer removed from uniform removal.
  • the local velocities of the wafer through the hot gas stream is then adjusted to compensate for the measured thickness variation.
  • a procedure for iteratively adjusting the velocity for a treating a batch of wafers using planetary motion configuration is described in the international patent WO9745856 entitled "Method for treating articles in a plasma jet," inventors Tokmouline and Siniaguine.
  • the depth of polymer removed from a local area as it moves through the hot gas stream depends on the velocity of the local area through the gas stream. Velocities may be in the range of .01 to 10 meters/sec.
  • An example of a polymer removal process would be for a 200 mm diameter wafer with a rotation and translation motion configuration in which the time averaged polymer removal rate is 5 microns/min and the average translation velocity of a pass through the hot gas stream is 0.5 m/sec. Including the time the wafer spends out of the hot gas stream, the time of a pass through the hot gas stream would be approximately 0.5 sec. In a single pass 0.042 microns of poy- mer would be removed.
  • the gas temperature is high and in thermal equilibrium in the etching gas stream; and (2) the arc generated plasma and process gas stream are highly collision dominated.
  • the atomic and mdecular species are near room temperature (e.g., 100°C) while the electrons are very energetic (e.g., 5 eV, ⁇ 50,000°K).
  • the atomic and molecular species are in thermal equilibrium with the electrons with the gas stream temperature being in the range of 4000 °C to 12,000 °C and preferably in the range of 7,000° to 10,000 °C.
  • the mass and energy transport is described by hydrodynamic flow characteristics.
  • the gas temperature may be 8,000°C while the wafer temperature may only be 100°C.
  • Known hydrodynamic boundary layer characteristics applied to this appi- cation and described in the following paragraph show, that while the gas t- - perature defined by the atoms and ions drop to the substrate temperature at the surface of the substrate (e.g., 10CPC), the electrons can maintain considerably more energy at the substrate surface (e.g., 0.7eV or ⁇ 6,000°C).
  • the temperature of the heavy species decrease smoothly from the temperature of the ircoming gas flow (e.g., 8000°C) down to the substrate surface temperature (e.g., 100°C).
  • the boundary layer thickness, ⁇ is ⁇ 10 4 m and the boundary thickness over which the signifi- cant part of the temperature change occurs is 0.015 ⁇ 10 "6 m.
  • the stream 14 of hot gas to the substrate that is generated by an atmospheric plasma consists of inert gas from the arc and process chamber ambient gas pulled or entrained into the stream and, optionally, gas injected directly into the hot gas stream by a gas injector 26.
  • the stream of hot gas to the substrate can remove the polymer by two mechanisms:
  • An ablation mechanism in which the flow of hot gas to the substrate surface 28 vaporizes clusters of molecules from the polymer surface which are subsequently converted to volatile by-products by reaction with the ambient oxygen in the process chamber 13 surrounding the apparatus 16.
  • the ablation process is an interaction with the top monolayers of the polymer layer and it can carry away a significant amount of heat from the polymer surface 28 so that the remaining polymer layer is not thermally degraded.
  • the above two mechanisms act in synergism.
  • the heat flux to the surface may accelerate the ashing mechanism and the heat generated by the ashing mechanism tend to accelerate ablation.
  • the atmospheric pressure approach for removal of polymers in high as- pect ratio holes is particularly effective in comparison with conventional low pressure ashing and HDP processes, as described above. It is recognized that to remove polymer from very high aspect ratio holes as illustrated at 40 in Figures 2-4 the pressure must be sufficiently low for reactive species to reach the bottom 42 of the holes 40 without being affected by collisions with other atomic or molecular species.
  • the transport of the etching species into the high aspect ratio hole is by way of a flow of collision dominated gas.
  • Results show that the polymer 44 can be removed from trenches or holes 40 having a 50:1 aspect ratio, with a width w of less than 0.1 micron, with little effect on the etching rate of the polymer 44 even near the bottom 42 of the hole 40. Results show no limit as to obtaining similar control of polymer removal from even higher aspect ratio holes.
  • the process of this invention must uniformly remove the photoresist 44 from the holes 40 to a controlled depth S as well as maintain a high etch rate so as not to drive up the process cost.
  • Obta ⁇ - ing uniform removal of photoresist is further complicated by the temperature dependence of the etch rate.
  • the etch rate for photoresist and other polymers increases with temperature.
  • Provisional Patent application 60/158,892 describes a wafer holder and wafer motion configuration in which a rotating wafer is trans- lated through the treatment area so that one can cause average wafer holder dependent thermal variations to be constant for a given radius. This provides axial symmetry to the temperature dependence.
  • programmed motion of the center axis of a rotating wafer is used to establish uniform treatment of the wafer.
  • the programmed motion of the wafer is used to compensate for thermal etch rate effects.
  • the 158,892 application describes the use of a direct fluid cooled wafer holder with temperature feed-back to maintain the wafer holder at a constant temp ⁇ ature during process- ing.

Abstract

A hot arc-type plasma generating system is described to etch a polymer (44) on a substrate (10) used in the manufacture of semiconductor devices. The etching process is particularly useful to remove a polymer from high aspect ratio holes (40), that can include trenches, greater than about 10 to 1 and even greater than 50 to 1.

Description

Atmospheric Process and System for Controlled and Rapid Removal of Polymers from High Depth to Width Aspect Ratio Holes
Prior Application
I claim priority benefits under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Serial No. 60156,407 filed September 28, 1999.
Field Of The Invention
This invention relates to semiconductor manufacturing generally and more specifically to a step in the process of manufacturing semiconductor devices using a hot gas stream technique.
Background Of The Invention
Holes and trench like patterns with a very high depth to width aspect ratio with micron or sub-micron openings have a number of applications in the manufacture of semiconductors. This description uses the term high aspect ratio holes to generically describe holes and trench like patterns that have a very high depth to width ratio of greater than 10 to 1. Various etching methods have been developed to generate such holes in silicon. The approaches use a lithographically defined mask pattern; wet chemical etch methods that take advantage of chemical selectivity along the crystal plane; and dry, plasma etch processes, which are done at low pressure to obtain a highly directional, anisotropic etch.
Very high aspect ratio holes have an application in semiconductor devices and in various miniature micro-machined devices (MIMMs). In semiconductor DRAM devices trenches for high capacitance structures with low surface area having aspect ratios of 50:1 and higher are being investigated for advanced de- signs. For both semiconductor and MIMMs devices, the need for subsequent patterning after making the very high aspect ratio holes usually requires a photo- lithographically defined mask pattern be made in a photosensitive polymer such as photoresist or photosensitive polyimide. In such a step, the high aspect ratio hole is filled with the photosensitive polymer.
Following the processes that use the polymer mask pattern, the polymer mask must be stripped from the device. In some applications, it may be advantageous to remove the polymer material partially, to a controlled depth to allow processing the upper, exposed section of the hole while the remaining polymer protects the lower section in the holes. A DRAM capacitor application that uses such a capability to increase the capacitor's area is described in "New Materials Enhance Memory Performance" a review by J. Baliga, Semiconductor International, November 1999, p 79-90, see p. 80.
Particularly for semiconductor applications, an additional requirement of the polymer removal process is that the exposed surface of the device not be subject to electrical degradation. Types of degradation that can occur in plasma removal processes may come from energetic species causing crystal damage or damage to a thin dielectric layer.
Standard methods of removing photo-polymers involve a method referred to as "ashing" in which a low pressure electrical discharge generates a plasma that creates chemically reactive oxygen species that flow to the surface to strip off the polymer and convert the polymer to volatile oxide by-products (e.g., HOx, COx). For very high aspect ratio holes, the flux of active oxygen species, that reaches the bottom of the hole, decreases as the aspect ratio increases, with the result that the etch rate of the polymer slows dramatically. One means to avoid this is to use a High Density Plasma (HDP). In this process, an intense plasma is generated at a low pressure. This pressure is sufficiently low so that the path length between collisions of plasma generated reactive species is sufficiently long so that reactive ions can be injected into the hole by acceleration of an electric field set-up in a boundary layer "sheath" over the surface of the substrate. A problem with this HDP approach is that the energetic ion species can electrically degrade the device's electrical characteristics.
The prior art has used the concept of a long path length between collisions with other gas species to enable a reactive species to reach the bottom of a very high aspect ratio hole where the species can convert the polymer to volatile by products.
Summary Of The Invention
In our invention we describe the use of a near atmospheric pressure process that enables removal of a polymer from high aspect ratio holes, including trenches, without electrical degradation. These holes in substrates may have depth to width ratios greater than 10:1 including very narrow widths that can be less than 0.1 micron. With this invention a controlled, partial removal of the poy- mer from high aspect ratio holes can be done without electrical degradation of sensitive devices that may be on the substrate. The polymers may be removed at relatively high rates, > 5 microns/min. The polymers may be standard, photoresists or highly cross-linked polymers such as polyimide that are very difficult to remove by any standard wet or dry plasma techniques.
This is achieved with one technique according to the invention with the use of a system for generating a near atmospheric flow of a hot gas stream to the wafer substrate surface from which polymer is to be removed from high aspect ratio holes. The hot gas stream typically has a smaller area than the substrate so that controlled motion of the substrate through the hot gas stream is used to uniformly remove polymer from the substrate. The hot gas stream is a high tempera- ture arc type plasma that is generated in an inert gas such as argon. The combined effect of ashing, i.e. the reaction of oxygen with the polymer to form volatile products, and ablation, discussed further in the following specification, enable a controlled removal of the polymer from high aspect ratio holes.
It is, therefore, an object of the invention to provide a technique for the removal of a polymer from a high aspect ratio hole in a semiconductor wafer or other substrate surface.
These and other advantages and objects of the invention can be unde- stood from the following detailed description of an embodiment as shown in the drawings.
Brief Description Of The Drawings
Figure 1 is a schematic side plan view of an apparatus showing the concept of using a hot gas stream for the removal or controlled partial removal of a polymer in accordance with the invention from high aspect ratio holes in a semi- conductor wafer substrate surface;
Figure 2 is a schematic side plan view of a plasma processing system that can be used to generate the needed hot gas stream;
Figure 3 is an enlarged section view of a semiconductor wafer substrate having high aspect ratio holes covered by a polymer during manufacture;
Figure 4 is an enlarged section view of a semiconductor wafer substrate as in Figure 2 with the polymer removed using the technique of our invention; and Figure 5 is an enlarged section view of a semiconductor wafer substrate as in Figure 2 but with the polymer partially removed using the technique of our invention.
Detailed Description Of The Drawings
With reference to Figures 1 and 2 a semiconductor wafer 10 is shown mounted on a wafer holder 12. A hot gas stream 14 is directed onto the substrate or wafer surface. The wafer 10 is held in an upside down position with the assε- tance of a negative pressure from a flow of gas such as nitrogen. The wafer holder 12 and technique for retaining a wafer can be as described in a CΘ pending provisional patent application entitled "Wafer Holder For Rotating and Translating Wafers For Processing In An Atmospheric plasma System With Control Of Wafer Holder Temperature" filed on October 12, 1999 bearing Serial No. 60/158,892 by the same inventors and owner as for this patent application and which provisional application is fully incorporated herein by reference thereto.
With reference to Figure 2, an atmospheric hot gas stream 14 is generated with an apparatus 16 within a sealed chamber 13. The atmospheric plasma generating system 16, often referred to as a plasma jet, has previously been described, see US patent 6,040,548, by Siniaguine, entitled "Apparatus for generating and deflecting a plasma jet". Additional improvements to the apparatus de- scribed in U.S. Patent 6,040,548 for this polymer removal application are described and referenced in the description of this application.
The apparatus 16 uses a high temperature, arc type plasma generated in an inert gas such as argon between two electrode subassemblies 18, 20 that serve as a cathode and anode for the arc discharge 22. As shown in Figure 2, the arc 22 formed by the electrode configuration creates the stream 14 of hot gas to the substrate surface 28. The substrate or wafer 10 to be processed is moved through the treatment area formed by the hot gas stream 14 using a suitable actuator that is not shown. Other suitable ambient gases may be employed inside the sealed chamber 13.
A gas injector 26 may be used to inject a gas such as oxygen or a mixture of gasses directly into the hot gas stream. Without a flow of gas from the gas ri- jector 26, the hot gas stream is composed primarily of the inert gas from the two electrode assemblies and from the process chamber 13 ambient gas that is entrained into the hot gas stream. For a polymer removal process, the temperature of the gas stream at the hydrodynamic gas boundary over the wafer surface 28 may typically be approximately 8,000°C. This temperature may be controlled by controlling the distance of the electrode assemblies 18 20 from the substrate 10 and the power into the arc type plasma. Typical power parameters for driving the arc plasma are approximately 150 V and 80 A.
The size of the treatment area generally denoted as A, where the stream 14 is incident upon the substrate surface 28, is approximately 2 cm diameter, normally less than the size of the substrate 10 to be processed (e.g., a 200 mm diameter silicon wafer). Consequently, the entire substrate surface 28 is treated by multiple passes of the wafer 10 through the treatment area using a motion configuration that provides for treatment over the full wafer area. The relative motion of the wafer with respect to the treatment area is programmed so that uniform treatment can be obtained. Motion configurations can be by way of step and scan or by way of rotation with translation of wafer 10.
The depth of polymer removed from a local area of a substrate as it passes through the hot gas stream depends on the time that the area spends in the hot gas stream and, consequently, on the velocity of that local area through the gas stream. For example, if a rotation and translation motion configuration is used with a constant rotational velocity, a local area of the wafer has a rotational velocity that increases with radial distance R from the center of rotation. To achieve uniform polymer removal over the full substrate, the translation velocity of the wafer through the hot gas stream must then be a function of distance from the center of rotation to account for this increase in radial velocity. To a first ap- proximation, the translation velocity will have a 1/R dependence. In practice, the programmed velocity may be adjusted in an iterative procedure based on a measurement after a partial polymer removal that gives a mapping of the vara- tion of the thickness of the polymer removed from uniform removal. The local velocities of the wafer through the hot gas stream is then adjusted to compensate for the measured thickness variation. A procedure for iteratively adjusting the velocity for a treating a batch of wafers using planetary motion configuration is described in the international patent WO9745856 entitled "Method for treating articles in a plasma jet," inventors Tokmouline and Siniaguine.
As described in the above paragraph, the depth of polymer removed from a local area as it moves through the hot gas stream depends on the velocity of the local area through the gas stream. Velocities may be in the range of .01 to 10 meters/sec. An example of a polymer removal process would be for a 200 mm diameter wafer with a rotation and translation motion configuration in which the time averaged polymer removal rate is 5 microns/min and the average translation velocity of a pass through the hot gas stream is 0.5 m/sec. Including the time the wafer spends out of the hot gas stream, the time of a pass through the hot gas stream would be approximately 0.5 sec. In a single pass 0.042 microns of poy- mer would be removed. To remove 2 microns of polymer, 48 passes would be needed. The number of passes of the substrate through the hot gas stream can then be used to control the depth of the polymer removed. In the above example, 0.5 microns would be removed with 12 passes. In practice, when polymer is removed from very narrow, very high aspect ratio holes there may be a depend- ence of removal rate with depth into the hole. This dependence can be measured and compensated for by adjusting the number of passes.
Two fundamental differences between our atmospheric process, and, the prior art ashing and HDP processes are: (1) the gas temperature is high and in thermal equilibrium in the etching gas stream; and (2) the arc generated plasma and process gas stream are highly collision dominated. In the prior art low pressure plasma applications, the atomic and mdecular species are near room temperature (e.g., 100°C) while the electrons are very energetic (e.g., 5 eV, ~ 50,000°K). In the gas stream 14 of an atmospheric system 16 in accordance with the invention as shown in Figures 1 and 2, the atomic and molecular species are in thermal equilibrium with the electrons with the gas stream temperature being in the range of 4000 °C to 12,000 °C and preferably in the range of 7,000° to 10,000 °C.
Because the atmospheric hot gas stream is highly collision dominated, the mass and energy transport is described by hydrodynamic flow characteristics. In the atmospheric system, within the region A at the boundary between the stream of hot gas and the substrate, there is a hydrodynamic boundary. There can be a large temperature differential across the boundary; on the gas streamside, the gas temperature may be 8,000°C while the wafer temperature may only be 100°C. Known hydrodynamic boundary layer characteristics applied to this appi- cation and described in the following paragraph show, that while the gas t- - perature defined by the atoms and ions drop to the substrate temperature at the surface of the substrate (e.g., 10CPC), the electrons can maintain considerably more energy at the substrate surface (e.g., 0.7eV or ~6,000°C). With this energy the electrons can locally generate species at the substrate that will contribute to etching in deep holes. The temperature of the heavy species, primarily atoms and ions of mass Matom, decrease smoothly from the temperature of the ircoming gas flow (e.g., 8000°C) down to the substrate surface temperature (e.g., 100°C). The boundary layer thickness, δ, is δ~104m and the boundary thickness over which the signifi- cant part of the temperature change occurs is 0.015 ~ 10"6 m. Compared to collisions between heavy species, electrons, because of their relatively light mass, Me, transfer only a small part of their kinetic energy per collision with a heavy species, a factor of Me/Matom ~ 10~5. Consequently, over such a small distance, electrons cannot transfer a major part of their energy while traversing the bound- ary layer.
For polymer removal application, the stream 14 of hot gas to the substrate that is generated by an atmospheric plasma consists of inert gas from the arc and process chamber ambient gas pulled or entrained into the stream and, optionally, gas injected directly into the hot gas stream by a gas injector 26. The stream of hot gas to the substrate can remove the polymer by two mechanisms:
1. An ashing mechanism in which thermally created adive oxygen species react with the polymer to form volatile by-products.
2. An ablation mechanism in which the flow of hot gas to the substrate surface 28 vaporizes clusters of molecules from the polymer surface which are subsequently converted to volatile by-products by reaction with the ambient oxygen in the process chamber 13 surrounding the apparatus 16. The ablation process is an interaction with the top monolayers of the polymer layer and it can carry away a significant amount of heat from the polymer surface 28 so that the remaining polymer layer is not thermally degraded. The above two mechanisms act in synergism. The heat flux to the surface may accelerate the ashing mechanism and the heat generated by the ashing mechanism tend to accelerate ablation.
The atmospheric pressure approach for removal of polymers in high as- pect ratio holes is particularly effective in comparison with conventional low pressure ashing and HDP processes, as described above. It is recognized that to remove polymer from very high aspect ratio holes as illustrated at 40 in Figures 2-4 the pressure must be sufficiently low for reactive species to reach the bottom 42 of the holes 40 without being affected by collisions with other atomic or molecular species. In an atmospheric hot gas technique in accordance with the invention, the transport of the etching species into the high aspect ratio hole is by way of a flow of collision dominated gas. Results show that the polymer 44 can be removed from trenches or holes 40 having a 50:1 aspect ratio, with a width w of less than 0.1 micron, with little effect on the etching rate of the polymer 44 even near the bottom 42 of the hole 40. Results show no limit as to obtaining similar control of polymer removal from even higher aspect ratio holes.
For the application of controlled removal of the polymer 40 from high aspect ratio holes 40 as shown in figure 4, the process of this invention must uniformly remove the photoresist 44 from the holes 40 to a controlled depth S as well as maintain a high etch rate so as not to drive up the process cost. Obtaή- ing uniform removal of photoresist is further complicated by the temperature dependence of the etch rate. The etch rate for photoresist and other polymers increases with temperature. For applications of removal of polymer to a controlled depth, rather than a complete stripping of the polymer, temperature control and uniformity of removal are necessary.
The above identified Provisional Patent application 60/158,892 describes a wafer holder and wafer motion configuration in which a rotating wafer is trans- lated through the treatment area so that one can cause average wafer holder dependent thermal variations to be constant for a given radius. This provides axial symmetry to the temperature dependence. As described in the above identified 158,892 patent application, programmed motion of the center axis of a rotating wafer is used to establish uniform treatment of the wafer. For the temperature dependent photoresist removal application, the programmed motion of the wafer is used to compensate for thermal etch rate effects. In addition, the 158,892 application describes the use of a direct fluid cooled wafer holder with temperature feed-back to maintain the wafer holder at a constant tempσature during process- ing.
Having thus described the hot gas process and a means of using an atmospheric plasma for generating the required hot gas stream to remove a poy- mer from a substrate device, the various advantages of the invention can be understood. Variations from the described process can be made by one skilled in the art without departing from the scope of the invention as set forth by the following claims.

Claims

What is claimed is:
1. A method for removing a polymer from a substrate having high aspect ratio holes having a depth to width aspect ratio of greater that 10:1 , comprising the step of: generating a hot gas stream and directing the stream at the substrate for a time period and with a sufficient number of passes to remove the polymer from the holes to a desired depth.
2. The method as claimed in claim 1 wherein said generating step generates the stream of gas with a temperature in the range of between about 4000 °C and about 12,000 °C.
3. The method as claimed in claim 2 wherein said generating step generates the stream of gas with a temperature in the range from about 7000 °C to about 10,000 °C.
4. The method for removing a polymer as claimed in claim 1 wherein said step of generating the hot gas stream comprises the step of: generating an atmospheric arc-type plasma stream between an anode and a cathode and directing the plasma at the polymer on the substrate.
5. The method for removing a polymer as claimed in claim 4 and further h- cluding the step of moving the substrate past theplasma stream at a speed and with a number of passes selected to remove a desired amount of polymer from the substrate.
6. The method as claimed in claim 1 wherein the substrate has a plurality of high aspect ratio holes and wherein said generated hot gas stream is directed at the substrate so as to remove the polymer from the high aspect ratio holes at a high etch rate.
7. The method for removing a polymer as claimed in claim 1 wherein said generated hot gas stream is directed at the substrate and the number of passes are selected so as to partially remove the polymer from the high aspect ratio holes to a controlled, desired depth.
8. The method as claimed in claim 1 wherein said polymer is a photoresist.
9. The method as claimed in claim 1 wherein said atmospheric hot gas stream includes ambient air.
10. The method as claimed in claim 1 wherein the hot gas stream is produced inside a sealed chamber and wherein the ambient atmosphere inside the chamber is formed with a gas that is injected into tie chamber.
11. The method for removing a polymer as claimed in claim 1 wherein a gas is injected directly into the hot gas stream that is directed at the substrate.
12. The method for removing a polymer as claimed in claim 1 wherein the hot gas stream defines an etching area near the substrate and further including the step of moving the substrate along a programmed motion with respect to the etching to control a partial depth removal of the polymer across the substrate.
EP00967233A 1999-09-28 2000-09-28 Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes Withdrawn EP1246710A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15640799P 1999-09-28 1999-09-28
US156407P 1999-09-28
PCT/US2000/027113 WO2001023130A1 (en) 1999-09-28 2000-09-28 Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes

Publications (2)

Publication Number Publication Date
EP1246710A1 true EP1246710A1 (en) 2002-10-09
EP1246710A4 EP1246710A4 (en) 2007-07-04

Family

ID=22559445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967233A Withdrawn EP1246710A4 (en) 1999-09-28 2000-09-28 Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes

Country Status (4)

Country Link
EP (1) EP1246710A4 (en)
JP (2) JP2003510824A (en)
AU (1) AU7746000A (en)
WO (1) WO2001023130A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510824A (en) * 1999-09-28 2003-03-18 ジエテツク,インコーポレーテツド Atmospheric processes and systems for controlled and rapid removal of polymers from holes with large depth to width aspect ratio
US6955991B2 (en) * 1999-11-01 2005-10-18 Jetek, Inc. Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes
FR2913972B1 (en) * 2007-03-21 2011-11-18 Saint Gobain METHOD FOR MANUFACTURING A MASK FOR CARRYING OUT A GRID

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159834A (en) * 1984-08-31 1986-03-27 Hitachi Ltd Detecting method of end point of etching
US4891303A (en) * 1988-05-26 1990-01-02 Texas Instruments Incorporated Trilayer microlithographic process using a silicon-based resist as the middle layer
US5173442A (en) * 1990-07-23 1992-12-22 Microelectronics And Computer Technology Corporation Methods of forming channels and vias in insulating layers
WO1997046056A1 (en) * 1996-05-31 1997-12-04 Ipec Precision, Inc. Apparatus for generating and deflecting a plasma jet
WO1997045856A1 (en) * 1996-05-31 1997-12-04 Ipec Precision, Inc. Method for treating articles with a plasma jet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783695A (en) * 1986-09-26 1988-11-08 General Electric Company Multichip integrated circuit packaging configuration and method
US5314709A (en) * 1991-03-20 1994-05-24 International Business Machines Corporation Unzippable polymer mask for screening operations
CA2097388A1 (en) * 1992-07-16 1994-01-17 Susan Nord Bohlke Topographical selective patterns
JP2787646B2 (en) * 1992-11-27 1998-08-20 三菱電機株式会社 Method for manufacturing semiconductor device
US5302547A (en) * 1993-02-08 1994-04-12 General Electric Company Systems for patterning dielectrics by laser ablation
JP3147137B2 (en) * 1993-05-14 2001-03-19 セイコーエプソン株式会社 Surface treatment method and device, semiconductor device manufacturing method and device, and liquid crystal display manufacturing method
JPH09246252A (en) * 1996-03-01 1997-09-19 Sony Corp Method and device for manufacturing semiconductor
US5968283A (en) * 1996-10-25 1999-10-19 Lucent Technologies Inc. Method for heat stripping optical fibers
JP2003510824A (en) * 1999-09-28 2003-03-18 ジエテツク,インコーポレーテツド Atmospheric processes and systems for controlled and rapid removal of polymers from holes with large depth to width aspect ratio

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159834A (en) * 1984-08-31 1986-03-27 Hitachi Ltd Detecting method of end point of etching
US4891303A (en) * 1988-05-26 1990-01-02 Texas Instruments Incorporated Trilayer microlithographic process using a silicon-based resist as the middle layer
US5173442A (en) * 1990-07-23 1992-12-22 Microelectronics And Computer Technology Corporation Methods of forming channels and vias in insulating layers
WO1997046056A1 (en) * 1996-05-31 1997-12-04 Ipec Precision, Inc. Apparatus for generating and deflecting a plasma jet
WO1997045856A1 (en) * 1996-05-31 1997-12-04 Ipec Precision, Inc. Method for treating articles with a plasma jet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0123130A1 *

Also Published As

Publication number Publication date
AU7746000A (en) 2001-04-30
WO2001023130A1 (en) 2001-04-05
EP1246710A4 (en) 2007-07-04
JP2007235138A (en) 2007-09-13
JP2003510824A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
US5110407A (en) Surface fabricating device
EP0367568B1 (en) Use of plasma in ashing processes
EP0305411B1 (en) Molecular beam etching system and method
EP0776032B1 (en) Plasma etching method
KR0153842B1 (en) Microwave plasma processing apparatus
US20070154636A1 (en) Substrate processing method and substrate processing apparatus
JP2000511356A (en) Method of treating articles with a plasma jet
JPH08279496A (en) Etching molding method and etching speed control method
WO2000045421A2 (en) Wafer edge engineering method and device
KR20050010770A (en) Method And Apparatus For Shaping Thin Films In The Near-Edge Regions Of In-Process Semiconductor Substrates
US6955991B2 (en) Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes
JPH065571A (en) Method and apparatus for performing non-contact plasma polishing and smoothing for uniformly thinned substrate
US5462635A (en) Surface processing method and an apparatus for carrying out the same
US20070228008A1 (en) Medium pressure plasma system for removal of surface layers without substrate loss
KR102194147B1 (en) Single type chamber for dry etching
US20050061235A1 (en) Method of manufacturing Er-doped silicon nano-dot array and laser ablation apparatus used therein
EP1246710A1 (en) Atmospheric process and system for controlled and rapid removal of polymers from high depth to width aspect ratio holes
US7365019B2 (en) Atmospheric process and system for controlled and rapid removal of polymers from high aspect ratio holes
JPH10135182A (en) Method and device for removing resist
KR20210137178A (en) Substrate processing method and substrate processing apparatus
US6835319B2 (en) Method of patterning a substrate
JPH0677126A (en) Formation method of flattening material layer utilizing condensation state
WO2007067177A1 (en) Medium pressure plasma system for removal of surface layers without substrate loss
JP2004055931A (en) Partial dry etching method
JP3032203B1 (en) Device manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

A4 Supplementary search report drawn up and despatched

Effective date: 20070601

17Q First examination report despatched

Effective date: 20071221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080701