EP0157090A2 - Verfahren sowie Anlage zur Reinigung von Werkstücken mittels eines flüssigen Lösemittels - Google Patents

Verfahren sowie Anlage zur Reinigung von Werkstücken mittels eines flüssigen Lösemittels Download PDF

Info

Publication number
EP0157090A2
EP0157090A2 EP85100612A EP85100612A EP0157090A2 EP 0157090 A2 EP0157090 A2 EP 0157090A2 EP 85100612 A EP85100612 A EP 85100612A EP 85100612 A EP85100612 A EP 85100612A EP 0157090 A2 EP0157090 A2 EP 0157090A2
Authority
EP
European Patent Office
Prior art keywords
drying
drying gas
solvent
adsorbent
gas circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85100612A
Other languages
English (en)
French (fr)
Other versions
EP0157090B1 (de
EP0157090A3 (en
Inventor
Heinz Koblenzer
Peter Hösel
Franz Dipl.-Ing. Staudinger (Fh)
Klaus Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Duerr GmbH
Original Assignee
Robert Bosch GmbH
Duerr GmbH
Lpw Reinigungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Duerr GmbH, Lpw Reinigungstechnik GmbH filed Critical Robert Bosch GmbH
Priority to AT85100612T priority Critical patent/ATE49720T1/de
Publication of EP0157090A2 publication Critical patent/EP0157090A2/de
Publication of EP0157090A3 publication Critical patent/EP0157090A3/de
Application granted granted Critical
Publication of EP0157090B1 publication Critical patent/EP0157090B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/04Apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect

Definitions

  • the invention relates to a method for cleaning workpieces by means of a liquid solvent in a treatment chamber, in which the workpieces are dried in a closed drying room by a gas stream after cleaning, wherein at least a part of the drying gas in a drying gas circuit of a part of the in vapor form entrained solvent is freed by cooling in a condensation stage and returned to the closed space, and an adsorbent is also used to adsorb solvent vapor formed during drying.
  • the solvents in question are those that can be used to remove greasy, oily or similar contaminants.
  • the treatment chamber also serves as a drying space and is therefore integrated into the drying gas circuit, which has a condensation stage designed as a heat exchanger, a blower and also a heating device designed as a heat exchanger for heating the as Drying gas contains circulated air.
  • a return line for condensed solvent leads from the condensation stage to the treatment chamber.
  • this solvent spray nozzles are installed, which are part of a solvent cycle, ie the solvent is on Pulled off the bottom of the treatment chamber and conveyed back to the spray nozzles via a pump. Dirty solvent is drawn off from the solvent circuit and regenerated via a distillation device.
  • the treatment chamber still contains too much solvent vapor after completion of the drying, at least if the condensation stage is operated at temperatures that can be achieved on an industrial scale with economically reasonable costs (the trichlorethylene which is frequently used) For example, at -10 ° C it still has a saturation content of almost 100 g / m 3 ), the drying gas circuit is switched off in the known method after the workpieces have been dried and the treatment chamber is flushed with room air until the solvent concentration in the treatment chamber is below that maximum permitted workplace concentration; The ambient air sucked in from the environment and used to flush the treatment chamber is blown off through the roof, whereby it can be passed through a condensation stage or over activated carbon in order to remove most of the solvent vapor.
  • a disadvantage of the known system is not only the comparatively great structural outlay in the case of cleaning the A b air, but the room air sucked in from the environment for flushing the treatment canisters leads to a loss of heating energy in winter, and the system can only be used with Operate high effort emission-free, because, as already mentioned, by a condensation stage operated with reasonable effort there is insufficient removal of the solvent vapors from the ambient air used to purge the treatment chamber and an activated carbon adsorber has to be filled with fresh or regenerated activated carbon after a relatively short time. In the usual regeneration processes for activated carbon, water vapor is blown into it, which is then condensed in a condensation stage.
  • the invention had for its object to provide a method of the type mentioned, which can be carried out with a simply constructed system that can be operated without exhaust air and, as a result, makes it possible to dispense with flushing the treatment chamber or the drying room with room air.
  • this object can be achieved in that Drying and desorption phase, the drying gas in the drying gas circuit after cooling and condensing part of the entrained solvent is passed over a heated adsorbent for the solvent vapor in order to remove desorbed solvent vapor desorbed from the heated adsorbent and to feed it to the condensation stage, and for further purification of the drying gas is passed in an adsorption phase in the drying gas circuit in a cool state over an adsorbent.
  • the problematic regeneration of the adsorbent with water vapor can thus be dispensed with, the construction of the apparatus is extremely simple and any adsorbent which is effective for the solvent used and which enables desorption, ie regeneration, at elevated temperatures can be used as the adsorbent.
  • the treatment chamber in which the workpieces are cleaned can also be used as a drying chamber in the method according to the invention.
  • Activated carbon is particularly recommended as an adsorbent, and for heating of the adsorbent for the purpose of desorption, a separate heating device could be provided for heating the adsorbent. .
  • a major advantage of the method according to the invention is that it can be carried out free of waste air and waste water.
  • the adsorbent for the desorption phase is not heated directly by a heating device, but rather by the drying gas which is heated behind the condensation stage. This not only means that the adsorbent heats up evenly , but also creates the conditions for the reuse of the condensation heat accumulating in the condensation stage by means of a heat pump for heating the drying gas.
  • the drying gas during the adsorption phase could flow through the drying circuit in the opposite direction to the flow direction during the drying and desorption phase, but it is more advantageous to choose the same flow direction for both phases, so that the drying gas from the condensation stage to the adsorber via the heating device switched on or off flows.
  • this is carried out in cycles, each of which comprises a cleaning phase, during which the workpieces are cleaned, a drying and desorption phase and an adsorption phase, and the workpieces are only in the closed space or the treatment chamber after completion of the Adsorption phase removed.
  • the invention also created a system for carrying out the above-described method, with one system starting from at least one closed treatment chamber for cleaning the workpieces with liquid solvent, a closed drying room for drying the cleaned workpieces, and a drying gas circuit containing the drying room, in which a cooler for the drying gas combined with a return line for condensed solvent is arranged, and has an adsorbent for the solvent that holds adsorbent; it is proposed according to the invention to place the adsorber and a heating device for heating the adsorbent between the cooler and drying space in the drying gas circuit.
  • a preferred embodiment of the system according to the invention has a heat pump, via which the cooler and the heating device are coupled to one another.
  • the system according to FIG. 1 has a treatment chamber 10 with a door 12 for loading and unloading, this door should be designed in such a way that the treatment chamber can be closed gas-tight with it.
  • the latter contains a holder, not shown, for workpieces to be cleaned, only one workpiece 14 being shown in FIG. 1.
  • This is sprayed by means of spray tubes 16, which are held stationary or movable in the treatment chamber 10, with liquid solvent, which flows via an intermediate floor 18 and a valve 20 to an underlying collecting space 21, in which there is a filter 22, under which a line 24 flows into the Collection room 21 opens.
  • This distillation device is connected to the solvent circuit via valves 34 and 36, a line 38 and a pump 40.
  • a drying gas circuit designated as a whole by 42, is also connected to the treatment chamber 10.
  • This comprises a line 44 with valves 46 and 48 opening into the treatment chamber 10 with both ends, in which a fan 50, a condenser 52, a heating device 54 and an adsorber 56 are arranged one behind the other.
  • a bypass line 62 provided with a valve 58 is provided, via which the drying gas circuit can be operated with the valves 46 and 48 closed, bypassing the treatment chamber 10.
  • a return line 66 provided with a valve 64 leads from the condenser 52 to the treatment chamber 10 in order to be able to return the solvent condensed in the condenser 52 into the solvent circuit.
  • the adsorber 56 should be filled with activated carbon.
  • the pump 26 is switched off and, after the solvent has drained off, the valve 20 is closed, whereupon with the valves 46 and 48 open and the valve 58 closed, the fan 50, the refrigerant circuit and the condenser 52, not shown, is shown the heater 54 are turned on.
  • the air heated by the heater 54 is blown against the workpiece 14 and absorbs solvent vapor up to its saturation vapor pressure.
  • Most of the solvent vapor condenses in the condenser 52, whereupon the air passes through the heater 54 heated again and thus the relative solvent vapor content is reduced. This in turn heats the activated carbon contained in the absorber 56, which is desorbed by the air flowing through it and thus regenerated.
  • the solvent vapors released by the desorption in the absorber 56 are partially condensed in the condenser 52.
  • the entire system contains a solvent content, which is determined by the temperature in the condenser 52.
  • the drying air circulated by the fan 50 is largely freed from the solvent vapors still contained in it by the regenerated adsorber 56, the heating device 54 being switched off, but the condenser 52 continues to operate to cool the adsorber 56 and piping system;
  • the regenerated activated carbon contained in the adsorber 56 then adsorbs the remaining solvent vapors.
  • the fan 50 is switched off and the workpiece can be removed from the treatment chamber.
  • the workpiece can also be dried in a separate drying room, which is connected to the treatment chamber 10 via a lock and is switched into the drying gas circuit 42.
  • valves 46 and 48 are closed and opened the valve 58, so as to be able to circulate air through the fan 50, which is heated by the heating device 54 and thus regenerates the activated carbon of the adsorber 56, while the solvent vapors in the condenser 52 condense. After the cleaning process has ended, the regeneration of the adsorber 56 can then be continued during the drying phase.
  • FIG. 2 The same reference numerals as in FIG. 1 have been used in FIG. 2 insofar as the two systems are identical, so that it is only necessary in the following to explain the deviations of the system according to FIG. 2 from the first embodiment.
  • the system has a drying gas circuit 42 connected to a treatment chamber 10 with two branches 42a and 42b connected in parallel, which are connected to the treatment chamber 10 via a line 44 and valves 46, 48.
  • Each of the branches 42a, 42b comprises at its ends valves 70, 72 or 70 ', 72', between which in series in the flow direction of the drying gas a fan 50 or 50 ', a condenser 52 or 52', a heating device 54 or 54 'and an adsorber 56 or 56'.
  • lines 76 and 76 ' are provided, each of which contains a valve 78 and 78', respectively.
  • another treatment chamber 10 ' can also be switched into the drying gas circuit 42 via a line 44' and valves 46 ', 48' as long as the treatment chamber 10 is emptied and valves are loaded with new workpieces when the valves 46, 48 are closed.
  • first use branch 42a for the drying and desorption phase of several cleaning cycles, for whose adsorption phases the branch 42b is switched over and during which the adsorber 56 is regenerated by the regeneration circuit 74a. After a few cleaning cycles, drying is then carried out via the branch 42b and desorbed, adsorbed via the branch 42a, and at the same time the adsorber 56 'is regenerated via the regeneration circuit 74b.
  • a treatment chamber 100 is again in a drying gas circuit 102, which, starting from the treatment chamber, contains a fan 104, a condenser 106, a heating device 108, an additional electrical heating device 110 and an adsorber 112 in succession.
  • Liquid solvent accumulating in the condenser 106 can be returned via a return line 66 into a space below the treatment chamber 100 corresponding to the collecting space 21 of the embodiment according to FIG. 1.
  • a refrigerant circuit 114 is also provided, which contains the condenser 106 as the evaporator and the heating device 108 as the condenser.
  • a compressor 116 is provided in the refrigerant circuit 114 and behind it, in series for the refrigerant, an aftercooler 118, a collecting tank 120 and a throttle 122, which is located in front of the condenser 106 serving as an evaporator.
  • the aftercooler 118 is supplied with cooling water or cooling air via a coolant line 126; In the coolant line there is a valve 128, which is controlled in a temperature-dependent manner by means of a temperature sensor 130.
  • a temperature sensor 132 is provided in the refrigerant circuit 114 behind the condenser 106 serving as an evaporator in order to be able to control the throttle 122 as a function of the temperature.
  • a bypass line 142 provided with a valve 140 will.
  • a valve 144 is provided in the refrigerant circuit 114 in front of the condenser 108 for this purpose.

Abstract

Verfahren und Anlage für die Reinigung von Werkstükken mittels eines flüssigen Lösemittels in einer Behandlungskammer, welche in einen Trocknungsgaskreislauf zum Trocknen der Werkstücke geschaltet ist. Der Trocknungsgaskreislauf enthält in Reihe hintereinander einen Ventilator, einen Kondensator, eine Heizvorrichtung und einen Aktivkohle enthaltenden Adsorber und wird so betrieben, daß während einer Trocknungsphase der Kondensator gekühlt, die Heizvorrichtung eingeschaltet und die Aktivkohle durch die heiße umgewälzte Luft regeneriert wird, worauf während einer Adsorptionsphase bei eingeschaltetem Kondensator und abgeschalteter Heizvorrichtung der umgewälzten Trocknungsluft der restliche Lösemitteldampf durch die Aktivkohle entzogen wird.

Description

  • Die Erfindung betrifft ein Verfahren für die Reinigung von Werkstücken mittels eines flüssigen Lösemittels in einer Behandlungskammer, bei dem die Werkstücke nach dem Reinigen in einem geschlossenen Trocknungsraum durch einen Gasstrom getrocknet werden, wobei mindestens ein Teil des Trocknungsgases in einem Trocknungsgaskreislauf von einem Teil des in Dampfform mitgeführten Lösemittels durch Abkühlung in einer Kondensationsstufe befreit und in den geschlossenen Raum zurückgeführt wird und wobei ferner ein Adsorptionsmittel zur Adsorption von bei der Trocknung entstehendem Lösemitteldampf verwendet wird. Bei den in Rede stehenden Lösemitteln handelt es sich um solche, mit denen sich fettige, ölige oder ähnliche Verschmutzungen lösen lassen.
  • Bei einem bekannten Verfahren der vorstehend erwähnten Art (DE-OS 32 05 736) dient die Behandlungskammer gleichzeitig als Trocknungsraum und ist deshalb in den Trocknungsgaskreislauf integriert, welcher eine als Wärmetauscher ausgebildete Kondensationsstufe, ein Gebläse sowie eine gleichfalls als Wärmetauscher ausgebildete Heizvorrichtung zum Aufheizen der als Trocknungsgas umgewälzten Luft enthält. Von der Kondensationsstufe führt eine Rückführleitung für kondensiertes Lösemittel zu der Behandlungskammer. In dieser sind Lösemittel-Sprühdüsen installiert, welche Bestandteil eines Lösemittelkreislaufs sind, d.h. das Lösemittel wird am Boden der Behandlungskammer abgezogen und über eine Pumpe zu den Sprühdüsen zurückgefördert. Verschmutztes Lösemittel wird aus dem Lösemittelkreislauf abgezogen und über eine Destilliereinrichtung regeneriert.
  • Da selbst bei einer mit Tiefkühlung arbeitenden Kondensationsstufe im Trocknungsgaskreislauf die Behandlungskammer nach Abschluss der Trocknung noch zu viel Lösemitteldampf enthält, jedenfalls dann, wenn in der Kondensationsstufe mit Temperaturen gearbeitet wird, die sich im industriellen Massstab mit wirtschattlich vertretbaren Kosten erreichen lassen (das häufig verwendete Trichloräthylen hat z.B. bei -10° C immer noch einen Sättigungsgehalt von nahezu 100 g/m3), wird bei dem bekannten Verfahren nach dem Trocknen der Werkstücke der Trocknungsgaskreislauf abgeschaltet und die Behandlungskammer mit Raumluft so lange gespült, bis die Lösemittelkonzentration in der Behandlungskammer unterhalb der maximal zulässigen Arbeitsplatzkonzentration liegt; die aus der Umgebung angesaugte und zum Spülen der Behandlungskammer verwendete Raumluft wird über Dach abgeblasen, wobei sie zuvor durch eine Kondensationsstufe oder über Aktivkohle geleitet werden kann, um den grössten Teil des Lösemitteldampfs zu entfernen.
  • Nachteilig an der bekannten Anlage ist nicht nur der verhältnismässig grosse bauliche Aufwand im Fall einer Reinigung der Ab-luft, sondern die zum Spülen der Behandlungskanmer aus der Umgebung angesaugt Raumluft führt im Winter zu einem Verlust an Heizenergie, und die Anlage lässt sich nur mit hohem Aufwand emissionsfrei betreiben, da, wie bereits erwähnt wurde, durch eine mit vertretbarem Aufwand betriebene Kondensationsstufe sich die Lösemitteldämpfe aus der zum Spülen der Behandlungskammer verwendeten Raumluft nur unzureichend entfernen lassen und ein Aktivkohle-Adsorber nach verhältnismässig kurzer Zeit mit frischer bzw. regenerierter Aktivkohle gefüllt werden muss. Bei den üblichen Regenerierverfahren für Aktivkohle wird in diese Wasserdampf eingeblasen, der anschliessend in einer Kondensationsstufe kondensiert wird. Damit sind aber mit dem durch die Erfindung zu verbessernden Verfahren zahlreiche Nachteile verbunden: Ein hoher Dampf-und damit Energieverbrauch; zusammen mit dem Wasser kondensiert auch das Lösemittel, was einerseits dessen Wiederverwendung erschwert und andererseits zu Abwasserproblemen führen kann; bei manchen chlorierten Kohlenwasserstoffen besteht die Gefahr der Hydrolyse (z.B. bei dem sehr häufig verwendeten 1.1.1-Trichloräthan); auch muss die Aktivkohle nach dem Einblasen des heissen Dampfes erst wieder vorgetrocknet werden, ehe man sie im Adsorber wieder verwenden kann; schliesslich enthält die zum Spülen der Behandlungskammer verwendete Raumluft Luftfeuchtigkeit, die zusammen mit dem Lösemitteldampf adsorbiert und desorbiert werden kann, aber eben nur dann, wenn ein wasserspezifischer Adsorber wie z.B. ein Molekularsieb eingesetzt wird (DE-OS 31 39 369).
  • Der Erfindung lag die Aufgabe zugrunde, ein Verfahren der eingangs erwähnten Art zu schaffen, welches sich mit einer einfach aufgebauten, abluftfrei betreibbaren Anlage durchführen lässt und es infolgedessen ermöglicht, auf eine Spülung der Behandlungskammer bzw. des Trocknungsraums mit Raumluft zu verzichten. Erfindungsgemäss lässt sich diese Aufgabe dadurch lösen, dass in einer Trocknungs- und Desorptionsphase das Trocknungsgas im Trocknungsgaskreislauf nach dem Abkühlen und Kondensieren eines Teils des mitgeführten Lösemittels über ein erwärmtes Adsorptionsmittel für den Lösemitteldampf geleitet wird, um von dem erwärmten Adsorptionsmittel desorbierten Lösemitteldampf ab- und der Kondensationsstufe zuzuführen, und dass zur weiteren Reinigung des Trocknungsgases dieses in einer Adsorptionsphase im Trocknungsgaskreislauf in kühlem Zustand über ein Adsorptionsmittel geleitet wird. In der Trocknungs- und Desorptionsphase wird also nicht nur ein grosser Teil des vom Trocknungsgas mitgeschleppten Lösemitteldampfs in der Kondensationsstufe entfernt, sondern durch das Trocknungsgas gleichzeitig das erwärmte Adsorptionsmittel regeneriert, so dass in der sich anschliessenden Adsorptionsphase das Lösemittel durch kühles Adsorptionsmittel so weitgehend aus dem Trocknungsgas entfernt werden kann, dass im Trocknungsraum die maximale Arbeitsplatzkonzentration unterschritten wird und infolgedessen die Werkstücke der Anlage entnommen werden können. Bei dem erfindungsgemässen Verfahren kann also auf die problematische Regenerierung des Adsorptionsmittels mit Wasserdampf verzichtet werden, der apparative Aufbau ist ausserordentlich einfach und als Adsorptionsmittel lässt sich jedes für das verwendete Lösemittel wirksame Adsorptionsmittel verwenden, welches eine Desorption, d.h. Regenerierung, bei erhöhten Temperaturen ermöglicht. Selbstverständlich kann auch bei dem erfindungsgemässen Verfahren die Behandlungskammer, in der die Werkstücke gereinigt werden, als Trocknungsraum verwendet werden. Als Adsorptionsmittel empfiehlt sich besonders Aktivkohle, und für die Erwärmung des Adsorptionsmittels zum Zwecke der Desorption könnte eine gesonderte Heizvorrichtung zum Erwärmen des Adsorptionsmittels vorgesehen sein. .
  • Als grosser Vorteil des erfindungsgemässen Verfahrens ist es zu werten, dass es sich abluft- und abwasserfrei durchführen lässt.
  • Es sei noch darauf hingewiesen, dass es an sich bekannt ist, Aktivkohle mit heisser Luft oder heissem Inertgas zu regenerieren (DE-PS 16 19 850), wobei die Luft im Gegenstrom durch die Aktivkohle hindurchgeleitet, das Gemisch aus Luft und Lösemitteldampf anschliessend katalytisch verbrannt und der so entstehende heisse Gasstrom teilweise erneut durch die Aktivkohle hindurchgeleitet wird. Hingegen entfallen bei einer Anlage zur Durchführung des erfindungsgemässen Verfahrens die bei den bekannten Regenerierverfahren für Adsorptionsmittel erforderlichen Umschaltventile und Einrichtungen zum Aufbereiten (Trocknen, Reinigen und Aufheizen) des Regeneriergases bzw. die Einrichtungen zum Herstellen des für die Desorption verwendbaren Wasserdampfs sowie seiner Abtrennung von dem desorbierten Lösemittel.
  • Bei einer bevorzugten Ausführungsform des erfindungsgemässen Verfahrens wird das Adsorptionsmittel für die Desorptionsphase nicht unmittelbar durch eine Heizvorrichtung erwärmt, sondern durch das Trocknungsgas, welches hinter der Kondensationsstufe erwärmt wird. Dadurch lässt sich nicht nur erreichen, dass das Adsorptionsmittel gleichmässig erwärmt wird, sondern man schafft auch die Voraussetzungen für die Wiederverwendung der in der Kondensationsstufe anfallenden Kondensationswärme mittels einer Wärmepumpe zum Aufheizen des Trocknungsgases.
  • Um während der Adsorptionsphase das Adsorptionsmittel wieder abzukühlen und gegebenenfalls Lösemittel in der Kondensationsstufe zurückzugewinnen, empfiehlt es sich, das Trocknungsgas auch während der Adsorptionsphase in der Kondensationsstufe zu kühlen.
  • Grundsätzlich könnte das Trocknungsgas während der Adsorptionsphase den Trocknungskreislauf entgegengesetzt zur Strömungsrichtung während der Trocknungs- und Desorptionsphase durchströmen, vorteilhafter ist es jedoch, für beide Phasen dieselbe Strömungsrichtung zu wählen, so dass das Trocknungsgas von der Kondensationsstufe über die ein- bzw. ausgeschaltete Heizvorrichtung zum Adsorber strömt.
  • Bei einer bevorzugten Ausführungsform des erfindungsgemässen Reinigungsverfahrens wird dieses in Zyklen durchgeführt, deren jeder eine Reinigungsphase, während der die Werkstücke gereinigt werden, eine Trocknungs- und Desorptionsphase sowie eine Adsorptionsphase umfasst, und die Werkstücke werden dem geschlossenen Raum bzw. der Behandlungskammer erst nach Abschluss der Adsorptionsphase entnommen.
  • Sollte ein von aussen vorgegebener Arbeitstakt nicht genügend Zeit lassen, das Adsorptionsmittel in der Trocknungsphase vollständig zu regenerieren, wird empfohlen, mit der Regenerierung schon während der Reinigungsphase zu beginnen, indem zur Desorption des Adsorptionsmittels während der Reinigungsphase Trocknungsgas unter Umgehung der Behandlungskammer im Trocknungsgaskreislauf über das erwärmte Adsorptionsmittel geführt sowie durch anschliessende Abkühlung sein Lösemittelgehalt herabgesetzt wird; diese JVerfährensführung setzt also lediglich eine zu- und abschaltbare Bypass-Leitung parallel zur Behandlungskammer voraus.
  • Durch die Erfindung wurde auch eine Anlage zur Durchführung des vorstehend geschilderten Verfahrens geschaffen, wobei von einer Anlage ausgegangen wurde, die mindestens eine geschlossene Behandlungskammer zur Reinigung der Werkstücke mit flüssigem Lösemittel, einen geschlossenen Trocknungsraum zur Trocknung der gereinigten Werkstücke, einen den Trocknungsraum enthaltenden Trocknungsgaskreislauf, in dem ein mit einer Rückführleitung für kondensiertes Lösemittel kombinierter Kühler für das Trocknungsgas angeordnet ist, sowie einen ein Adsorptionsmittel für das Lösemittel aufnehmenden Adsorber aufweist; dabei wird erfindungsgemäss vorgeschlagen, den Adsorber sowie eine Heizvorrichtung zum Erwärmen des Adsorptionsmittels zwischen Kühler und Trocknungsraum in den Trocknungsgaskreislauf zu legen. Bei einer derartigen Anlage muss zum Umschalten von der Trocknungs- und Desorptionsphase auf die Adsorptionsphase und umgekehrt lediglich die Heizvorrichtung ab- bzw. angeschaltet werden, während keinerlei Ventile und sonstige Steuerungseinrichtungen erforderlich sind. Zur Wärmerückgewinnung während der Trocknungs- und Desorptionsphase weist eine bevorzugte Ausführungsform der erfindungsgemässen Anlage eine Wärmepumpe auf, über die der Kühler und die Heizvorrichtung miteinander gekoppelt sind.
  • Will man mit der Regenerierung des Adsorptionsmittels, d.h. mit der Desorptionsphase des erfindungsgemässen Verfahrens, unabhängig von der Taktzeit zwischen Be- und Entladen der Behandlungskammer bzw. des Trocknungsraums werden, so empfiehlt es sich, die erfindungsgemässe Anlage so auszubilden, dass der 1-auf mehrere wahlweise in den letzteren einschaltbare Regenerationskreisläufe mit einem Trocknungsgas-Umwälzgerät, einem Kühler sowie einer durch ein Ventil sperrbaren Trocknungsgas-Rückführleitung zur Vervollständigung des Regenerationskreislaufs aufweist.
  • Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus den beigefügten Ansprüchen und/oder aus der nachfolgenden Beschreibung sowie der beigefügten zeichnerischen Darstellung einiger bevorzugter Ausführungsformen der erfindungsgemässen Anlage; die Figuren 1 bis 3 stellen drei verschiedene Ausführungsformen schematisch dar.
  • Die Anlage gemäss Fig. 1 weist eine Behandlungskammer 10 mit einer Tür 12 zum Be- und Entladen auf, wobei diese Tür so gestaltet sein soll, dass sich mit ihr die Behandlungskammer gasdicht verschliessen lässt. Die letztere enthält eine nicht dargestellte Halterung für zu reinigende Werkstücke, wobei in Fig. 1 nur ein Werkstück 14 dargestellt wurde. Dieses wird mittels in der Behandlungskammer 10 stationär oder beweglich gehaltener Spritzrohre 16 mit flüssigem Lösemittel abgespritzt, das über einen Zwischenboden 18 und ein Ventil 20 zu einem darunter befindlichen Sammelraum 21 strömt, in dem sich ein Filter 22 befindet, unter dem eine Leitung 24 in den Sammelraum 21 mündet. Die Leitung 24 bildet zusammen mit einer eine Pumpe 26 enthaltenden Leitung 28 sowie einer zu den Spritzrohren 16 führenden Leitung 30 einen Lösemittelkreislauf, und mittels einer Destilliervorrichtung 32 oder dergleichen kann das Lösemittel regeneriert, z.B. von ölen und Fetten befreit werden. Diese Destilliervorrichtung ist über Ventile 34 und 36, eine Leitung 38 und eine Pumpe 40 mit dem Lösemittelkreislauf verbunden.
  • An die Behandlungskammer 10 ist ferner ein als Ganzes mit 42 bezeichneter Trocknungsgaskreislauf angeschlossen. Dieser umfasst eine mit ihren beiden Enden in die Behandlungskammer 10 mündende Leitung 44 mit Ventilen 46 und 48, in der hintereinander ein Ventilator 50, ein Kondensator 52, eine Heizvorrichtung 54 sowie ein Adsorber 56 angeordnet sind. Ausserdem ist eine mit einem Ventil 58 versehene Bypass-Leitung 62 vorgesehen, über die der Trocknungsgaskreislauf bei geschlossenen Ventilen 46 und 48 unter Umgehung der Behandlungskammer 10 betrieben werden kann. Vom Kondensator 52 führt eine mit einem Ventil 64 versehene Rückführleitung 66 zur Behandlungskammer 10, um das im Kondensator 52 kondensierte Lösemittel in den Lösemittelkreislauf zurückführen zu können. Der Adsorber 56 soll mit Aktivkohle gefüllt sein.
  • Nachdem das Werkstück 14 hinreichend gereinigt wurde, wird die Pumpe 26 abgeschaltet und nach dem Abfliessen des Lösemittels das Ventil 20 geschlossen, worauf bei offenen Ventilen 46 und 48 sowie geschlossenem Ventil 58 der Ventilator 50, der den Kondensator 52 enthaltende, nicht näher dargestellte Kältemittelkreislauf und die Heizvorrichtung 54 eingeschaltet werden. Die durch die Heizvorrichtung 54 erwärmte Luft wird gegen das Werkstück 14 geblasen und nimmt bis zu ihrem Sättigungsdampfdruck Lösemitteldampf auf. Im Kondensator 52 kondensiert der grösste Teil des Lösemitteldampfs, worauf die Luft durch die Heizvorrichtung 54 wieder aufgeheizt und somit der relative Lösemitteldampfgehalt reduziert wird. Diese heizt ihrerseits die im Absorber 56 enthaltene Aktivkohle auf, welche durch die sie durchströmende Luft desorbiert und so regeneriert wird. Die durch die Desorption im Absorber 56 freigesetzten Lösemitteldämpfe werden zum Teil im Kondensator 52 kondensiert.
  • Nach Abschluss der Trocknungs- und Desorptionsphase enthält das ganze System einen Lösemittelgehalt, der durch die Temperatur im Kondensator 52 festgelegt ist. Ehe nun die Tür 12 geöffnet und das Werkstück 14 aus der Behandlungskammer 10 entfernt wird, befreit man die durch den Ventilator 50 umgewälzte Trocknungsluft durch den regenerierten Adsorber 56 weitgehendst von den in ihr noch enthaltenen Lösemitteldämpfen, wobei die Heizvorrichtung 54 ausgeschaltet, der Kondensator 52 jedoch weiterhin in Betrieb gehalten wird, um den Adsorber 56 und das Leitungssystem abzukühlen; die im Adsorber 56 enthaltene, regenerierte Aktivkohle adsorbiert dann die restlichen Lösemitteldämpfe. Sobald der Lösemittelgehalt der Umluft unter der maximal zulässigen Arbeitsplatzkonzentration liegt, wird der Ventilator 50 abgeschaltet und kann das Werkstück der Behandlungskammer entnommen werden.
  • Natürlich kann die Trocknung des Werkstücks auch in einem separaten Trocknungsraum erfolgen, der mit der Behandlungskammer 10 über eine Schleuse verbunden und in den Trocknungsgaskreislauf 42 eingeschaltet ist.
  • Soll mit der Regenerierung des Adsorbers 56 aus Zeitgründen schon begonnen werden, so lange das Werkstück 14 noch gereinigt wird, schliesst man die Ventile 46 und 48 und öffnet das Ventil 58, um so durch den Ventilator 50 Luft umwälzen zu können, die durch die Heizvorrichtung 54 aufgeheizt wird und so die Aktivkohle des Adsorbers 56 regeneriert, während die Lösemitteldämpfe im Kondensator 52 kondensieren. Nach Beendigung des Reinigungsvorgangs kann dann die Regenerierung des Adsorbers 56 während der Trocknungsphase fortgesetzt werden.
  • In Fig. 2 wurden dieselben Bezugszeichen wie in Fig. 1 verwendet, soweit die beiden Anlagen identisch sind, so dass es im folgenden lediglich erforderlich ist, die Abweichungen der Anlage gemäss Fig. 2 von der ersten Ausführungsform zu erläutern.
  • Die Anlage besitzt einen an eine Behandlungskammer 10 angeschlossenen Trocknungsgaskreislauf 42 mit zwei parallel geschalteten Zweigen 42a und 42b, die über eine Leitung 44 und Ventile 46, 48 an die Behandlungskammer 10 angeschlossen sind. Jeder der Zweige 42a, 42b, umfasst an seinen Enden Ventile 70, 72 bzw. 70', 72', zwischen denen in Reihe in Strömungsrichtung des Trocknungsgases hintereinander ein Ventilator 50 bzw. 50', ein Kondensator 52 bzw. 52', eine Heizvorrichtung 54 bzw. 54' und ein Adsorber 56 bzw. 56' liegen. Um die beiden Trocknungsgaskreislaufzweige 42a, 42b zu vollständigen Regenerationskreisläufen 74a und 74b auszubauen, sind Leitungen 76 und 76' vorgesehen, die jeweils ein Ventil 78 bzw. 78' enthalten.
  • Anstelle der Behandlungskammer 10 kann auch eine andere Behandlungskammer 10' über eine Leitung 44' und Ventile 46', 48' in den Trocknungsgaskreislauf 42 eingeschaltet werden, solange bei geschlossenen Ventilen 46, 48 die Behandlungskammer 10 geleert und mit neuen Werkstücken beladen wird.
  • Der Vorzug der in Fig. 2 dargestellten Anlage gegenüber derjenigen nach Fig. 1 besteht nicht nur darin, daß sich die Adsorber 56 und 56' auch dann vollständig regenerieren lassen, wenn die Taktzeiten für die Trocknungsphase relativ kurz sind, z.B. weil mit mehreren Behandlungskammern gearbeitet wird, sondern auch in einer Energieeinsparung: Bei einer Anlage, wie sie in Fig. 1 dargestellt ist, muß der Adsorber in kurzen Zeitabständen aufgeheizt und wieder abgekühlt werden. Eine Anlage entsprechend derjenigen nach Fig. 2 ermöglicht es nun, Adsorber 56 bzw. 56' mit großer Kapazität zu verwenden, so dass jeder über mehrere Reinigungszyklen entweder Lösemitteldampf adsorbiert oder regeneriert wird. So kann man z.B. zunächst den Zweig 42a für die Trocknungs-und Desorptionsphase mehrerer Reinigungszyklen verwenden, für deren Adsorptionsphasen auf den Zweig 42b umgeschaltet wird und während welcher der Adsorber 56 durch den Regenerationskreislauf 74a regeneriert wird. Nach einigen Reinigungszyklen wird dann über den Zweig 42b getrocknet und desorbiert, über den Zweig 42a adsorbiert und gleichzeitig der Adsorber 56' über den Regenerationskreislauf 74b regeneriert.
  • Selbstverständlich wird auch bei der Anlage nach Fig. 2 in den Kühlern bzw. Kondensatoren 52 und 52' rückgenommenes Lösemittel wieder den nicht dargestellten Sammelräumen 21 der Behandlungskammer 10 und 10' zugeführt.
  • Die Anlage gemäss Fig. 3 enthält Mittel zur Wärmerückgewinnung aus der Kondensationsstufe zwecks Aufheizung der im Trocknungsgaskreislauf umlaufenden Luft und damit des Adsorbers zu dessen Regenerierung.
  • Eine Behandlungskammer 100 liegt wieder in einem Trocknungsgaskreislauf 102, welcher, ausgehend von der Behandlungskammer, hintereinander einen Ventilator 104, einen Kondensator 106, eine Heizvorrichtung 108, eine elektrische Zusatzheizvorrichtung 110 und einen Adsorber 112 enthält. Im Kondensator 106 anfallendes, flüssiges Lösemittel kann wieder über eine Rückführleitung 66 in einen dem Sammelraum 21 der Ausführungsform nach Fig. 1 entsprechenden Raum unterhalb der Behandlungskammer 100 zurückgeführt werden.
  • Ferner ist ein Kältemittelkreislauf 114 vorgesehen, der als Verdampfer den Kondensator 106 und als Verflüssiger die Heizvorrichtung 108 enthält. Ausserdem sind im Kältemittelkreislauf 114 ein Kompressor 116 und hinter diesem in Reihe für das Kältemittel ein Nachkühler 118, ein Sammelbehälter 120 und eine Drossel 122 vorgesehen, die vor dem als Verdampfer dienenden Kondensator 106 liegt. Der Nachkühler 118 wird über eine Kühlmittelleitung 126 mit Kühlwasser oder Kühlluft versorgt; in der Kühlmittelleitung liegt ein Ventil 128, welches mit Hilfe eines Temperaturfühlers 130 temperaturabhängig gesteuert wird. Ausserdem ist hinter dem als Verdampfer dienenden Kondensator 106 ein Temperaturfühler 132 im Kältemittelkreislauf 114 vorgesehen, um die Drossel 122 temperaturabhängig steuern zu können. Ein mit 134 bezeichneter Nachverdampfer, welcher als Wärmetauscher für das Kältemittel ausgebildet ist, dient dazu, das flüssige Kältemittel hinter dem Sammelbehälter 120 noch weiter abzukühlen.
  • Um während der Adsorptionsphase die Trocknungsluft durch den Verflüssiger 108 nicht aufzuheizen, kann dieser durch eine mit einem Ventil 140 versehene Bypass-Leitung 142 überbrückt werden. Ausserdem ist zu diesem Zweck im Kältemittelkreislauf 114 vor dem Verflüssiger 108 ein Ventil 144 vorgesehen.

Claims (14)

1. Verfahren für die Reinigung von Werkstücken mittels eines flüssigen Lösemittels in einer Behandlungskammer, bei dem die Werkstücke nach dem Reinigen in einem geschlossenen Trocknungsraum durch einen Gasstrom getrocknet werden, wobei mindestens ein Teil des Trocknungsgases in einem Trocknungsgaskreislauf von einem Teil des in Dampfform mitgeführten Lösemittels durch Abkühlung in einer Kondensationsstufe befreit und in den Trocknungsraum zurückgeführt wird und wobei ferner ein Adsorptionsmittel zur Adsorption von bei der Trocknung entstehendem Lösemitteldampf verwendet wird, dadurch gekennzeichnet, dass in einer Trocknungs- und Desorptionsphase das Trocknungsgas im Trocknungsgaskreislauf nach dem Abkühlen und Kondensieren eines Teils des mitgeführten Lösemittels über ein erwärmtes Adsorptionsmittel für den Lösemitteldampf geleitet wird, um von dem erwärmten Adsorptionsmittel desorbierten Lösemitteldampf ab- und der Kondensationsstufe zuzuführen, und dass zur weiteren Reinigung des Trocknungsgases dieses in einer Adsorptionsphase im Trocknungsgaskreislauf über kühles Adsorptionsmittel geleitet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Adsorptionsmittel für die Desorptionsphase dadurch erwärmt wird, dass das Trocknungsgas hinter der Kondensationsstufe erwärmt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Trocknungsgas auch während der Adsorptionsphase in der Kondensationsstufe abgekühlt wird.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Trocknungsgas während der Adsorptionsphase den Trocknungsgaskreislauf in derselben Richtung durchläuft wie in der Trocknungs- und Desorptionsphase.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Werkstücke dem Trocknungsraum erst nach der Adsorptionsphase entnommen werden.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Reinigungsverfahren in Zyklen durchgeführt wird, deren jeder eine Reinigungsphase, während der die Werkstücke gereinigt werden, eine Trocknungs- und Desorptionsphase sowie eine Adsorptionsphase umfasst.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zur Desorption des Adsorptionsmittels während der Reinigungsphase Trocknungsgas unter Umgehung der Behandlungskammer im Trocknungsgaskreislauf über das erwärmte Adsorptionsmittel geführt sowie durch anschliessende Abkühlung sein Lösemittelgehalt herabgesetzt wird.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, gekennzeichnet durch eine Wärmerückführung von der Kondensationsstufe zu derjenigen Zone des Trocknungsgaskreislaufs, in der das Trocknungsgas bzw. das Adsorptionsmittel erwärmt wird.
9. Anlage zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 8, mit mindestens einer geschlossenen Behandlungskammer zur Reinigung der Werkstücke mit flüssigem Lösemittel, einem geschlossenen Trocknungsraum zur Trocknung der gereinigten Werkstücke, einem den Trocknungsraum enthaltenden Trocknungsgaskreislauf, in dem ein mit einer Rückführleitung für kondensiertes Lösemittel kombinierter Kühler für das Trocknungsgas angeordnet ist, sowie mit einem ein Adsorptionsmittel für das Lösemittel aufnehmenden Adsorber, dadurch gekennzeichnet, dass der Trocknungsgaskreislauf (42; 102) zwischen Kühler (52; 106) und Trocknungsraum (10; 100) auch den Adsorber (56; 112) sowie eine Heizvorrichtung (54; 108, 110) zum Erwärmen des Adsorptionsmittels enthält.
10. Anlage nach Anspruch 9, dadurch gekennzeichnet, dass der Trocknungsgaskreislauf (42; 102) zwischen Kühler (52; 106) und Adsorber (56; 112) eine Heizvorrichtung (54; 108, 110) für das Trocknungsgas enthält.
11. Anlage nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Trocknungsgaskreislauf (42) eine den Trocknungsraum (10) überbrückende, zuschaltbare Bypass-Leitung (62) enthält.
12. Anlage nach einem oder mehreren der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Behandlungskammer (10; 100) auch den Trocknungsraum bildet.
13. Anlage nach einem oder mehreren der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass der Kühler (106) und die Heizvorrichtung (108) über eine Wärmepumpe (116, 108, 106) miteinander gekoppelt sind.
14. Anlage nach einem oder mehreren der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass der Trocknungsgaskreislauf (42) mehrere wahlweise in den letzteren einschaltbare Regenerationskreisläufe (74a, 74b) mit einem Trocknungsgasumwälzgerät (50 bzw. 50'), einem Kühler (52 bzw. 52'), einer Heizvorrichtung (54 bzw. 54'), einem Adsorber (56 bzw. 56') sowie einer durch ein Ventil (78 bzw. 78') sperrbaren Trocknungsgas-Rückführleitung (76 bzw. 76') zur Vervollständigung des Regenerationskreislaufs aufweist.
EP85100612A 1984-03-31 1985-01-22 Verfahren sowie Anlage zur Reinigung von Werkstücken mittels eines flüssigen Lösemittels Expired - Lifetime EP0157090B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85100612T ATE49720T1 (de) 1984-03-31 1985-01-22 Verfahren sowie anlage zur reinigung von werkstuecken mittels eines fluessigen loesemittels.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3412007 1984-03-31
DE19843412007 DE3412007A1 (de) 1984-03-31 1984-03-31 Verfahren zur reinigung von werkstuecken mittels eines fluessigen loesemittels

Publications (3)

Publication Number Publication Date
EP0157090A2 true EP0157090A2 (de) 1985-10-09
EP0157090A3 EP0157090A3 (en) 1986-10-01
EP0157090B1 EP0157090B1 (de) 1990-01-24

Family

ID=6232196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85100612A Expired - Lifetime EP0157090B1 (de) 1984-03-31 1985-01-22 Verfahren sowie Anlage zur Reinigung von Werkstücken mittels eines flüssigen Lösemittels

Country Status (4)

Country Link
US (1) US4844743A (de)
EP (1) EP0157090B1 (de)
AT (1) ATE49720T1 (de)
DE (2) DE3412007A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289982A2 (de) * 1987-05-07 1988-11-09 Höckh Metall-Reinigungs-Anlagen Gmbh Einrichtung zum Trocknen von Gegenständen in Reinigungsanlagen
EP0302280A2 (de) * 1987-08-07 1989-02-08 BÖWE-PASSAT Reinigungs- und Wäschereitechnik GmbH Verfahren und Vorrichtung zum Rückgewinnen von Lösemittelgasen aus einem Luftstrom
EP0381887A1 (de) * 1989-01-30 1990-08-16 Kabushiki Kaisha Tiyoda Seisakusho Verfahren und System zur Reinigung mit Lösungsmitteln
WO1993017770A1 (en) * 1992-03-06 1993-09-16 Baxter International Inc. A solvent recovery and reclamation system
US5346534A (en) * 1990-09-12 1994-09-13 Baxter International Inc. Process for treating an article with a volatile fluid
EP0778065A1 (de) * 1995-12-07 1997-06-11 3 EFFE.GI S.r.l. Vorrichtung zur Adsorption von Lösemitteln und Rückgewinnung mittels Kondensation

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609587C1 (de) * 1986-03-21 1986-12-04 BÖWE Reinigungstechnik GmbH, 8900 Augsburg Vorrichtung zur Rueckgewinnung von Loesemittelgasen
DE3714312A1 (de) * 1987-04-29 1988-11-10 Siemens Ag Verfahren und einrichtung zum reinigen von elektrischen geraeten mit einem isolieroel in einem behaelter
DE8813603U1 (de) * 1988-10-29 1988-12-22 Weil, Peter, 8000 Muenchen, De
DE3930880A1 (de) * 1989-01-11 1990-07-12 Edmund Hirner Verfahren und vorrichtung zum reinigen, insbesondere entfetten verschmutzter teile durch spuelen und/oder bespritzen
US5060396A (en) * 1989-08-17 1991-10-29 W. R. Grace & Co.-Conn. Zoned cylindrical dryer
US5001845A (en) * 1989-08-17 1991-03-26 W. R. Grace & Co.,-Conn. Control system for an industrial dryer
DE3933111A1 (de) * 1989-10-04 1991-04-18 Peter Warthmann Verfahren und vorrichtung zum auffangen und rueckgewinnen von loesungsmitteln aus loesungsmittelhaltiger abluft
DE3935032C3 (de) * 1989-10-20 2000-08-24 Zinser Raimund Verfahren und Vorrichtung zum Reinigen und Trocknen von Gegenständen
US5277716A (en) * 1990-11-19 1994-01-11 The Dow Chemical Company Method of controlling the solvent vapor concentration in an apparatus
GB9027705D0 (en) * 1990-12-20 1991-02-13 Dow Europ Sa Method of controlling the solvent vapor concentration in a gas lock of an apparatus
US5186758A (en) * 1991-08-09 1993-02-16 Robert Hartman Environmentally-friendly battery cleaning method
RU2036029C1 (ru) * 1991-09-10 1995-05-27 Научно-внедренческое предприятие "Эчтех" Способ очистки изделий от углеводородных загрязнений и устройство для его осуществления
US5355901A (en) * 1992-10-27 1994-10-18 Autoclave Engineers, Ltd. Apparatus for supercritical cleaning
DE4243820A1 (de) * 1992-12-23 1994-06-30 Glob Tec Industriemaschinen Gm Verfahren zum chargenweisen Reinigen von Teilen mittels eines Lösemittels in einer Arbeitskammer
DE4324432C2 (de) * 1993-07-21 1996-04-25 Multimatic Oberflaechentechnik Verfahren zur Reinigung verschmutzter Teile
DE4411163A1 (de) * 1994-03-30 1995-10-05 Kurt M Dr Ing Pohl Verfahren zur Behandlung von Teilen oder Komponenten durch Besprühen und/oder Überfluten mit einem Lösemittel
JP2759633B2 (ja) * 1995-09-06 1998-05-28 川崎重工業株式会社 ハニカムコアの接着前脱脂洗浄方法
US5769912A (en) * 1995-10-16 1998-06-23 Mansur Industries Inc. System and method of vapor recovery in industrial washing equipment
DE19640060C2 (de) * 1996-09-28 2000-01-27 Boewe Passat Reinigung Reinigungsverfahren in einer Textilreinigungsmaschine
FR2771662B1 (fr) * 1997-12-01 2000-01-28 Eurocopter France Poste manuel de degraissage
DE19809622A1 (de) * 1998-03-06 1999-09-09 Knaack & Jahn Gmbh Anlage für die Behandlung von Gegenständen in einer definierten Gasatmosphäre, deren O¶2¶-Gehalt kleiner als der von Luft ist und bei der umweltschädliche Behandlungsgase erzeugt werden
DE10038154A1 (de) * 2000-08-04 2002-03-07 Bernd Schlaich Systemlösung zur abwasserfreien Farbreinigung nach chemischem Verfahren
US20090277475A1 (en) * 2006-02-14 2009-11-12 Earl Fenton Goddard Parts washer
KR100962293B1 (ko) * 2009-07-17 2010-06-11 주식회사 일우텍 부품 세척기 및 세척 방법
US10421124B2 (en) * 2017-09-12 2019-09-24 Desktop Metal, Inc. Debinder for 3D printed objects
US11732652B2 (en) 2021-03-23 2023-08-22 General Electric Company Removing safety markers from a hydrogen fuel system
US11788474B2 (en) 2022-03-07 2023-10-17 General Electric Company Pericritical fluid systems for turbine engines
US11946378B2 (en) 2022-04-13 2024-04-02 General Electric Company Transient control of a thermal transport bus
US11927142B2 (en) 2022-07-25 2024-03-12 General Electric Company Systems and methods for controlling fuel coke formation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079286A (en) * 1962-03-02 1963-02-26 Detrex Chem Ind Enclosed cold solvent spray cleaner
US3144872A (en) * 1963-08-16 1964-08-18 Detrex Chem Ind Trough-type solvent washer
US4101340A (en) * 1976-03-01 1978-07-18 Autosonics, Inc. Solvent spray cleaning system for minimizing solvent losses
GB2084613A (en) * 1980-08-21 1982-04-15 Ihringer Ernest Cleaning painted articles
GB2092620A (en) * 1981-02-10 1982-08-18 Autosonics Inc Vapour degreasing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE110711C1 (de) *
US3460990A (en) * 1964-10-12 1969-08-12 Donald J Barday Method for cleaning objects with solvent
US3733710A (en) * 1971-07-13 1973-05-22 Detrex Chem Ind Method for drying metal parts
DE2523079B2 (de) * 1975-05-24 1977-04-07 Böwe Böhler & Weber KG Maschinenfabrik, 8900 Augsburg Vorrichtung zur adsorptiven entfernung von loesemitteldaempfen aus einem luftstrom
US4023983A (en) * 1975-10-28 1977-05-17 Collins Machinery Corporation Vapor cleaning system
NL158558B (nl) * 1975-12-04 1978-11-15 Metalas Engineering B V Dampontvettingsinrichting.
JPS5524543A (en) * 1978-08-11 1980-02-21 Kuri Kagaku Sochi Kk Manufacture of concentrated and dried powder from solution or dispersion
JPS60178009A (ja) * 1984-02-25 1985-09-12 Color Toronitsuku Kk 合成樹脂乾燥用の高温除湿空気発生方法およびその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079286A (en) * 1962-03-02 1963-02-26 Detrex Chem Ind Enclosed cold solvent spray cleaner
US3144872A (en) * 1963-08-16 1964-08-18 Detrex Chem Ind Trough-type solvent washer
US4101340A (en) * 1976-03-01 1978-07-18 Autosonics, Inc. Solvent spray cleaning system for minimizing solvent losses
GB2084613A (en) * 1980-08-21 1982-04-15 Ihringer Ernest Cleaning painted articles
GB2092620A (en) * 1981-02-10 1982-08-18 Autosonics Inc Vapour degreasing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289982A2 (de) * 1987-05-07 1988-11-09 Höckh Metall-Reinigungs-Anlagen Gmbh Einrichtung zum Trocknen von Gegenständen in Reinigungsanlagen
EP0289982A3 (en) * 1987-05-07 1990-01-31 Hockh Metall-Reinigungs-Anlagen Gmbh Drying apparatus for objects in cleaning plants
EP0302280A2 (de) * 1987-08-07 1989-02-08 BÖWE-PASSAT Reinigungs- und Wäschereitechnik GmbH Verfahren und Vorrichtung zum Rückgewinnen von Lösemittelgasen aus einem Luftstrom
EP0302280A3 (de) * 1987-08-07 1991-01-09 BÖWE-PASSAT Reinigungs- und Wäschereitechnik GmbH Verfahren und Vorrichtung zum Rückgewinnen von Lösemittelgasen aus einem Luftstrom
EP0381887A1 (de) * 1989-01-30 1990-08-16 Kabushiki Kaisha Tiyoda Seisakusho Verfahren und System zur Reinigung mit Lösungsmitteln
US5346534A (en) * 1990-09-12 1994-09-13 Baxter International Inc. Process for treating an article with a volatile fluid
WO1993017770A1 (en) * 1992-03-06 1993-09-16 Baxter International Inc. A solvent recovery and reclamation system
EP0778065A1 (de) * 1995-12-07 1997-06-11 3 EFFE.GI S.r.l. Vorrichtung zur Adsorption von Lösemitteln und Rückgewinnung mittels Kondensation

Also Published As

Publication number Publication date
EP0157090B1 (de) 1990-01-24
DE3412007A1 (de) 1985-10-10
ATE49720T1 (de) 1990-02-15
DE3575524D1 (de) 1990-03-01
EP0157090A3 (en) 1986-10-01
US4844743A (en) 1989-07-04
DE3412007C2 (de) 1987-02-26

Similar Documents

Publication Publication Date Title
EP0157090B1 (de) Verfahren sowie Anlage zur Reinigung von Werkstücken mittels eines flüssigen Lösemittels
EP0260481B1 (de) Verfahren und Vorrichtung zum Abscheiden und Rückgewinnen von flüchtigen Lösungsmitteln
DE3821523A1 (de) Vorrichtung zur kontinuierlichen abtrennung und wiedergewinnung eines loesungsmittels aus loesungsmittelhaltiger abluft
DE3609587C1 (de) Vorrichtung zur Rueckgewinnung von Loesemittelgasen
DE3533313A1 (de) Verfahren und vorrichtung zum abscheiden und rueckgewinnen von fluechtigen loesungsmitteln
EP0018478B1 (de) Anlage zur Rückgewinnung von Lösungsmitteln und Verfahren zu ihrem Betrieb
DE3139369C2 (de) Adsorptionsfilter mit Desorptionseinrichtung
EP0331611A2 (de) Anlage zum Reinigen von Werkstücken
EP0189041A1 (de) Verfahren zur Rückgewinnung von Lösemitteln bei Reinigungsprozessen
DE3824046A1 (de) Kontinuierliches verfahren zur reinigung loesungsmittelhaltiger abluft mit rueckgewinnung des loesungsmittels
DE2107717A1 (en) Regeneration reactor for adsorbents - heated by microwave
EP0130546B1 (de) Verfahren zur Rückgewinnung von Lösemitteln bei der Textilbehandlung
DE3933111A1 (de) Verfahren und vorrichtung zum auffangen und rueckgewinnen von loesungsmitteln aus loesungsmittelhaltiger abluft
DE3124388A1 (de) Verfahren und vorrichtung zur adsorption von stoffen, insbesondere zur abscheidung organischer loesemittel aus fluessigkeiten und gasen
DE4214246A1 (de) Einrichtung zur reinigung eines luftstromes von leichtfluechtigen verunreinigungen sowie verfahren zum betreiben einer solchen einrichtung
DE2928138C2 (de) Verfahren zum Regenerieren eines von mehreren Adsorptionsmittelbetten
EP0215472A2 (de) Verfahren und Vorrichtung zum Abscheiden und Rückgewinnen von flüchtigen Lösungsmitteln
DE3713346A1 (de) Verfahren und vorrichtung zur reinigung industrieller abluft
DE2703737A1 (de) Anordnung und verfahren zur rueckgewinnung von loesungsmittel aus der abluft einer chemischen reinigungsanlage oder dergleichen
DE950121C (de) Verfahren zur Gewinnung von wertvollen Stoffen aus gasfoermigen Mitteln durch Adsorptionsmittel
DE3810646A1 (de) Vorrichtung und verfahren zum gewinnen von loesemitteln
EP0218601B1 (de) Regenerierungseinrichtung
DE4000499A1 (de) Emissions-freier desorptionsprozess
DE4328405A1 (de) Verfahren und Vorrichtung zum Entfernen und Oxidieren organischer Bestandteile von Küchendünsten
EP1038992B1 (de) Verfahren und Anlage zur Oberflächenbehandlung von Teilen mit einem Lösungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

Owner name: DUERR GMBH

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19861113

17Q First examination report despatched

Effective date: 19870914

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 49720

Country of ref document: AT

Date of ref document: 19900215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3575524

Country of ref document: DE

Date of ref document: 19900301

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910123

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910131

Ref country code: CH

Effective date: 19910131

Ref country code: BE

Effective date: 19910131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931229

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950112

Year of fee payment: 11

EUG Se: european patent has lapsed

Ref document number: 85100612.2

Effective date: 19910910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960122