EP0108190A2 - Shock wave reflector - Google Patents

Shock wave reflector Download PDF

Info

Publication number
EP0108190A2
EP0108190A2 EP83106090A EP83106090A EP0108190A2 EP 0108190 A2 EP0108190 A2 EP 0108190A2 EP 83106090 A EP83106090 A EP 83106090A EP 83106090 A EP83106090 A EP 83106090A EP 0108190 A2 EP0108190 A2 EP 0108190A2
Authority
EP
European Patent Office
Prior art keywords
reflector
wave
die
shock wave
der
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83106090A
Other languages
German (de)
French (fr)
Other versions
EP0108190A3 (en
EP0108190B1 (en
Inventor
Othmar Dr.Rer.Nat. Wess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier System GmbH
Original Assignee
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier System GmbH filed Critical Dornier System GmbH
Publication of EP0108190A2 publication Critical patent/EP0108190A2/en
Publication of EP0108190A3 publication Critical patent/EP0108190A3/en
Application granted granted Critical
Publication of EP0108190B1 publication Critical patent/EP0108190B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the invention relates to a reflector for focusing shock waves for the contact-free comminution of concrements in bodies of living beings according to the German application P 23 51 247.
  • the reflector has the shape of an ellipsoid and has the task of focusing shock waves that are generated on a spark gap in the first focal point and spread through a liquid in the reflector onto the second focal point, in which the calculus to be destroyed, for example a kidney stone, is located .
  • the reflector should have as high proportion of W generated in the first focus elle energy as possible in the correct phase in the second focus transmitted.
  • Reflectors made of brass are known with an enclosure angle of approximately 250 °, whereby the full solid angle (4 ⁇ ) is used to approximately 90% and an axis ratio a: b of approximately 2: 1 (E. Schmiedt: Contributions to Urology, Vol. 2, pages 8-13, Kunststoff 1980).
  • the other constraints such as stability and easy workability have led to the use of brass.
  • the invention has for its object to provide a reflector that focuses shock waves with a higher efficiency than the reflectors known from the prior art.
  • the invention is based on the knowledge that it is not the jump in sound wave resistance ⁇ ⁇ c that alone is the decisive variable for good focusing, but that the speeds of the sound wave in the reflector material and must be coordinated in the liquid.
  • the waves hitting the surface of the reflector stimulate the latter, among other things, to transversal vibrations which propagate with characteristic propagation speeds in the reflector material and on its surface.
  • the reflected wavefront is disturbed if, due to time differences, the reflection surface already swings in the direction of the surface normal when the primary wavefront arrives.
  • In-phase focusing in the second focal point is achieved when the wave propagates faster in the liquid than in the reflector.
  • the wavefront then always meets a stationary reflector surface.
  • materials can also be used whose transverse surface speed is greater than the speed of sound in the coupling medium, e.g. Water is when only the leading of the surface wave is prevented by the geometry of the reflector by observing the condition mentioned in claim 1.
  • the reflected useful wave itself remains undisturbed and retains the original steepness of the primary wave. All other faults - e.g. are generated by the lagging surface wave - follow the useful wave with a time delay and cannot impair the focusing process.
  • Reflectors according to the invention realize a much better focusing than before, since all wave components overlap in phase.
  • the slope of the pressure rise which is essential for comminution, remains high.
  • the shredding performance increases, fewer applications than before are necessary, which relieves the patient and increases the service life of the spark gap.

Abstract

Reflektor zur Fokussierung von Stoßwellen zur berührungslosen Zerkleinerung von Konkrementen in Körpern von Lebewesen, bei dem durch geeignete Materialauswahl und Geometrie ein Voreilen einer Transversalwelle im Reflektormaterial vor der Stoßwellenfront im Koppelmedium verhindert wird.Reflector for focusing shock waves for contactless crushing of concretions in the bodies of living beings, in which the selection of a suitable material and geometry prevents a transverse wave in the reflector material from leading the shock wave front in the coupling medium.

Description

Die Erfindung betrifft einen Reflektor zur Fokussierung von Stoßwellen zur berührungsfreien Zerkleinerung von Konkrementen in Körpern von Lebewesen gemäß der deutschen Anmeldung P 23 51 247.The invention relates to a reflector for focusing shock waves for the contact-free comminution of concrements in bodies of living beings according to the German application P 23 51 247.

Der Reflektor besitzt die Form eines Ellipsoids und hat die Aufgabe, Stoßwellen, die an einer Funkenstrecke im ersten Brennpunkt erzeugt werden und sich durch eine Flüssigkeit im Reflektor ausbreiten auf den zweiten Brennpunkt, in dem sich das zu zerstörende Konkrement z.B. ein Nierenstein befindet, zu fokussieren. Der Reflektor soll einen möglichst hohen Anteil der im ersten Brennpunkt erzeugten Wellenenergie möglichst phasenrichtig in den zweiten Brennpunkt übertragen.The reflector has the shape of an ellipsoid and has the task of focusing shock waves that are generated on a spark gap in the first focal point and spread through a liquid in the reflector onto the second focal point, in which the calculus to be destroyed, for example a kidney stone, is located . The reflector should have as high proportion of W generated in the first focus elle energy as possible in the correct phase in the second focus transmitted.

Bekannt sind Reflektoren aus Messing mit einem Umschliessungswinkel von ca. 250°, wobei der volle Raumwinkel (4 π) zu etwa 90% ausgenutzt wird und einem Achsverhältnis a:b von ungefähr 2:1 (E. Schmiedt: Beiträge zur Urologie, Bd. 2, Seite 8-13, München 1980). Die Materialauswahl erfolgt aufgrund eines möglichst hohen Sprunges in der Schallimpedanz z = § · c (§ = Dichte; c = Schallgeschwindigkeit) zwischen Flüssigkeit und Reflektormaterial, um einen hohen Reflexionskoeffizienten zu erhalten. Die weiteren Randbedingungen wie Stabilität und leichte Bearbeitbarkeit haben bisher zur Verwendung von Messing geführt.Reflectors made of brass are known with an enclosure angle of approximately 250 °, whereby the full solid angle (4 π) is used to approximately 90% and an axis ratio a: b of approximately 2: 1 (E. Schmiedt: Contributions to Urology, Vol. 2, pages 8-13, Munich 1980). The material is selected based on the highest possible jump in the sound impedance z = § · c (§ = density; c = speed of sound) between the liquid and the reflector material in order to obtain a high reflection coefficient. The other constraints such as stability and easy workability have led to the use of brass.

Der Erfindung liegt die Aufgabe zugrunde, einen Reflektor zu schaffen, der Stoßwellen mit einem höheren Wirkungsgrad als die aus dem Stand der Technik bekannten Reflektoren fokussiert.The invention has for its object to provide a reflector that focuses shock waves with a higher efficiency than the reflectors known from the prior art.

Gelöst wird diese Aufgabe von einem Reflektor mit den im Anspruch 1 genannten Merkmalen.This object is achieved by a reflector with the features mentioned in claim 1.

Ausbildungen der Erfindung sind Gegenstände von Unteransprüchen.Developments of the invention are the subject of dependent claims.

Der Erfindung liegt die Erkenntnis zugrunde, dass nicht der Sprung im Schallwellenwiderstand § · c allein die entscheidende Grösse für eine gute Fokussierung ist, sondern dass die Geschwindigkeiten der Schallwelle im Reflektormaterial und in der Flüssigkeit aufeinander abgestimmt sein müssen. Die auf die Oberfläche des Reflektors treffenden Wellen regen diesen u.a. zu Transversalschwingungen an, die sich mit charakteristischen Ausbreitungsgeschwindigkeiten im Reflektormaterial und an dessen Oberfläche ausbreiten. Zu Störungen der reflektierten Wellenfront kommt es, wenn aufgrund von Laufzeitunterschieden die Reflexionsfläche bereits in Richtung der Flächennormalen schwingt, wenn die Primärwellenfront einläuft.The invention is based on the knowledge that it is not the jump in sound wave resistance § · c that alone is the decisive variable for good focusing, but that the speeds of the sound wave in the reflector material and must be coordinated in the liquid. The waves hitting the surface of the reflector stimulate the latter, among other things, to transversal vibrations which propagate with characteristic propagation speeds in the reflector material and on its surface. The reflected wavefront is disturbed if, due to time differences, the reflection surface already swings in the direction of the surface normal when the primary wavefront arrives.

Eine phasenrichtige Fokussierung in den zweiten Brennpunkt wird dann erreicht, wenn sich die Welle in der Flüssigkeit schneller als im Reflektor ausbreitet. Die Wellenfront trifft dann stets auf eine ruhende Reflektoroberfläche.In-phase focusing in the second focal point is achieved when the wave propagates faster in the liquid than in the reflector. The wavefront then always meets a stationary reflector surface.

Genäß der Erfindung können jedoch auch Materialien verwendet werden, deren transversale Oberflächengeschwindigkeit grösser als die Schallgeschwindigkeit im Koppelmedium z.B. Wasser ist, wenn nur die Voreilung der Oberflächenwelle durch die Geometrie des Reflektors durch Einhalten der im Anspruch 1 genannten Bedingung verhindert wird. Die reflektierte Nutzwelle bleibt dann selbst ungestört und behält die ursprüngliche Flankensteilheit der Primärwelle bei. Alle übrigen Störungen - die z.B. durch die nachhinkende Oberflächenwelle erzeugt werden - folgen der Nutzwelle zeitlich verzögert und können den Fokussierungsvorgang nicht beeinträchtigen.According to the invention, however, materials can also be used whose transverse surface speed is greater than the speed of sound in the coupling medium, e.g. Water is when only the leading of the surface wave is prevented by the geometry of the reflector by observing the condition mentioned in claim 1. The reflected useful wave itself remains undisturbed and retains the original steepness of the primary wave. All other faults - e.g. are generated by the lagging surface wave - follow the useful wave with a time delay and cannot impair the focusing process.

Erfindungsgemässe Reflektoren realisieren eine wesentlich bessere Fokussierung als bisher, da alle Wellenanteile sich phasenrichtig überlagern. Die Flankensteilheit des Druckanstiegs, die für eine Zerkleinerung wesentlich ist, bleibt hoch. Die Zerkleinerungsleistung steigt, es sind weniger Applikationen als bisher notwendig, wodurch der Patient entlastet wird und die Standzeit der Funkenstrecke erhöht wird.Reflectors according to the invention realize a much better focusing than before, since all wave components overlap in phase. The slope of the pressure rise, which is essential for comminution, remains high. The shredding performance increases, fewer applications than before are necessary, which relieves the patient and increases the service life of the spark gap.

Ein Ausführungsbeispiel der Erfindung wird anhand der einzigen Figur erklärt:

  • Die Figur zeigt schematisch einen menschlichen Körper 1 mit einem Nierenstein 6 in einer wassergefüllten Wanne 2. An der Unterseite der Wanne 2 ist ein ellipsoidförmiger Reflektor 3 mit den beiden Brennpunkten 4 und 5 befestigt, der ebenfalls mit Wasser gefüllt ist. Im Brennpunkt 4 im Inneren des Reflektors 3 befindet sich eine Funkenstrecke (nicht gezeigt), die durch Unterwasserentladung Stosswellen erzeugen kann. Im zweiten Brennpunkt 5, ausserhalb des Reflektors, liegt das zu zerstörende Konkrement, z.B. der Nierenstein 6. Durch die Reflektorgeometrie ist der Grenz- winkel ϕmax definiert. Wenn im Brennpunkt 4 eine Unterwasserentladung gezündet wird, entsteht eine Stosswellenfront 7, die sich kugelförmig ausbreitet und vom Reflektor 3 als reflektierte Stosswellenfront 9 auf den Nierenstein geleitet wird. Durch die hohen Druck- und Zugamplituden werden Teile des Nierensteins zum Abplatzen gebracht. Eingezeichnet ist die Stosswellenfront 7, die gerade an den Punkten 8 die Reflektoroberfläche erreicht. Sie trifft momentan unter einem Winkel lp auf die Reflektoroberfläche. Die auftretende Stosswellenfront 7 wird zum grössten Teil reflektiert (Front 9), erzeugt aber auch eine transversale Oberflächenwelle 10 (nicht maßstäblich gezeichnet), die sich in der Reflektoroberfläche ausbreitet (Pfeil). Bei erfindungsgemässer Material- und Geometrieauswahl läuft die Primärwelle 7 schneller über die Reflektoroberfläche als die störende Transversalwelle 10. Die Primärwelle 7 trifft daher immer auf ruhendes Oberflächenmaterial, sie wird ungestört reflektiert. Die reflektierte Wellenfront 9 behält die ursprüngliche Flankensteilheit im Druckanstieg. Alle reflektierten Anteile überlagern sich phasenrichtig. Für die Zerkleinerung des Steins 6 geht kaum Energie verloren. Werden die erfindungsgemässen Bedingungen nicht eingehalten, so trifft die Primärwelle 7 auf schon von. der Oberflächenwelle 10 angeregte Teile des Reflektors. Durch Wechselwirkung der Primärwelle 7 mit der Oberflächenwelle 10 wird die reflektierte Welle 9 in Amplitude und Phase gestört. Die Folge ist, dass Energie für die Zerkleinerung des Konkrements fehlt oder dass der Druckanstieg am Ort des Konkrements durch die nicht phasenrichtige Überlagerung der einzelnen Anteile zu langsam erfolgt,
An embodiment of the invention is explained with reference to the single figure:
  • The figure schematically shows a human body 1 with a kidney stone 6 in a water-filled tub 2. On the underside of the tub 2, an ellipsoidal reflector 3 with the two focal points 4 and 5 is attached, which is also filled with water. At the focal point 4 inside the reflector 3 there is a spark gap (not shown) which can generate shock waves through underwater discharge. The second focal point 5, outside the reflector, the concrement to be destroyed, for example, is the kidney stone 6. Due to the geometry of the reflector G renz- angle φ max is defined. If an underwater discharge is ignited in the focal point 4, a shock wave front 7 is formed which spreads out in a spherical shape and is guided by the reflector 3 as a reflected shock wave front 9 onto the kidney stone. The high pressure and tensile amplitudes cause parts of the kidney stone to flake off. Some is the shock wave front 7, which just reaches the reflector surface at points 8. It currently strikes the reflector surface at an angle lp. The shock wave front 7 that occurs is largely reflected (front 9), but also generates a transverse surface wave 10 (not drawn to scale) that propagates in the reflector surface (arrow). With the choice of material and geometry according to the invention, the primary wave 7 runs faster over the reflector surface than the interfering transverse wave 10. The primary wave 7 therefore always strikes resting surface material, it is reflected undisturbed. The reflected wavefront 9 retains the original slope in the pressure increase. All reflected parts overlap in phase. Hardly any energy is lost for crushing the stone 6. If the conditions according to the invention are not met, the primary shaft 7 already hits. the surface wave 10 excited parts of the reflector. By interaction of the primary wave 7 with the surface wave 10, the reflected wave 9 is disturbed in amplitude and phase. The result is that there is a lack of energy for the crushing of the calculus or that the pressure increase at the location of the calculus is too slow due to the incorrect overlaying of the individual parts,

  • 1. Die Bedingung cTO < cS wird erfüllt, wenn als Reflektormaterial Blei und als Koppelflüssigkeit Wasser verwendet wird. Da die transversale Schallgeschwindigkeit in Blei mit 710 m/sec kleiner als die Schallgeschwindigkeit in Wasser mit 1480 m/sec ist, ist die sich ausbreitende Primärwelle 7 immer schneller als die Oberflächenwelle 10. Die Bedingung ist daher unabhängig von der Reflektorgeometrie immer erfüllt. Ein kritischer Winkel K tritt nicht auf. Es ist nicht notwendig, dass der ganze Reflektorkörper aus Blei hergestellt wird. Es reicht, wenn die innere Oberfläche des Reflektors aus einer Bleischicht besteht.1. The condition c TO <c S is met if lead is used as the reflector material and water is used as the coupling liquid. Since the transverse speed of sound in lead at 710 m / sec is lower than the speed of sound in water at 1480 m / sec, the propagating primary wave 7 is always faster than the surface wave 10. The condition is therefore always fulfilled regardless of the reflector geometry. A critical angle K does not occur. It is not necessary for the entire reflector body to be made of lead. It is sufficient if the inner surface of the reflector consists of a layer of lead.
  • 2. Die erfindungsgemässe Bedingung kann auch von Reflektoren aus einem Material erfüllt werden, dessen cTO > cS ist. Ein wassergefüllter Reflektor aus Zinn (cT0 = 1670 m/sec) mit den Halbachsen a = 12,5 cm und b = 7,5 cm erfüllt die erfindungsgemässe Bedingung, wenn der maximal auftretende Einfallswinkel ϕmax kleiner als der kritische Winkel ϕK = 62,4° ist.2. The condition according to the invention can also be met by reflectors made of a material whose c TO > c S. A water-filled reflector made of tin (c T0 = 1670 m / sec) with the semiaxes a = 12.5 cm and b = 7.5 cm fulfills the condition according to the invention if the maximum angle of incidence ϕ max that occurs is less than the critical angle ϕ K = Is 62.4 °.
  • 3. Der zum Stand der Technik gehörende Messingreflektor (cTO = 2120 m/sec) besitzt bei Wasserfüllung einen kritischen Winkel von 44,8°, jedoch einen maximalen Einfallswinkel von 53,1°. Er erfüllt die erfindungsgemässe Bedingung nicht, eine optimale Fokussierung ist nicht gegeben. Die Fokussierung kann bei gleichem Material verbessert werden durch Wahl des Achsenverhältnisses des Ellipsoids näher an 1 oder durch Verzicht auf Randzonen (kleinerer Umschliessungswinkel). Die Randzonen sind aber für die Übertragung äusserst wichtig und sollten nicht weggelassen werden.3. The brass reflector belonging to the prior art (c TO = 2120 m / sec) has a critical angle of 44.8 ° when filled with water, but a maximum angle of incidence of 53.1 °. It fulfills the inventive Not a condition, an optimal focus is not given. The focus can be improved for the same material by choosing the axial ratio of the ellipsoid closer to 1 or by dispensing with edge zones (smaller angle of coverage). The edge zones are extremely important for the transfer and should not be left out.

In Analogie zur Schallmauer ergibt sich beim kritischen Winkel ϕK die Situation, dass die Quelle der Oberflächenschwingung (die einlaufende Primärfront) sich auf der Re- flektorfläche mit der Ausbreitungsgeschwindigkeit cTO der Oberflächenwelle selbst ausbreitet und damit phasenrichtig Energie in die Oberflächenwelle einkoppelt. Erst wenn nach 'einer gewissen gemeinsamen zurückgelegten Strecke sich aufgrund der veränderten Reflektorgeometrie der Einfallswinkel f vergrössert, kann die jetzt energiereiche Oberflächenwelle der einfallenden Stoßwellenfront vorauseilen und ihre Energie nach Art des Mach'schen Kegels (modifiziert durch die gekrümmte Reflektorfläche) ausstrahlen und u.a. teilweise noch vor der eigentlichen Nutzwelle in den Fokusbereich einbringen.In analogy to the sound barrier, the situation arises at the critical angle ϕ K that the source of the surface vibration (the incoming primary front) spreads itself on the reflector surface with the propagation velocity cTO of the surface wave and thus couples energy into the surface wave in the correct phase. Only when enlarged f for 'a certain common distance traveled due to the altered reflector geometry the angle of incidence, the now-energy surface acoustic wave of the incident shock wave front can precede and their energy on the type of Mach cone (modified by the curved reflector surface) emit and UA still partially before the actual useful wave in the focus area.

Claims (1)

1. Reflektor zur Fokussierung von Stoßwellen in einer Koppelflüssigkeit, z.B. Wasser, zur berührungslosen Zerkleinerung von Konkrementen in Körpern von Lebewesen, dadurch gekennzeichnet, dass die Ausbreitungsgeschwindigkeit cTO einer transversalen Oberflächenwelle im reflektierenden Material kleiner ist als die Schallgeschwindigkeit cS in der den Reflektor füllenden Koppelflüssigkeit, oder dass die Geometrie und die Auswahl des reflektierenden Materials folgender Ungleichung genügen:
Figure imgb0001
wobei ϕmax = maximal auftretender Einfallswinkel
Figure imgb0002
1. reflector for focusing shock waves in a coupling liquid, e.g. water, for contactless comminution of concrements in bodies of living beings, characterized in that the propagation velocity c TO of a transverse surface wave in the reflecting material is smaller than the speed of sound c S in the one filling the reflector Coupling fluid, or that the geometry and the selection of the reflective material satisfy the following inequality:
Figure imgb0001
where ϕ max = maximum angle of incidence
Figure imgb0002
EP83106090A 1982-11-06 1983-06-22 Shock wave reflector Expired EP0108190B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241026A DE3241026C2 (en) 1982-11-06 1982-11-06 Reflector for focusing shock waves
DE3241026 1982-11-06

Publications (3)

Publication Number Publication Date
EP0108190A2 true EP0108190A2 (en) 1984-05-16
EP0108190A3 EP0108190A3 (en) 1984-07-25
EP0108190B1 EP0108190B1 (en) 1986-09-24

Family

ID=6177450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106090A Expired EP0108190B1 (en) 1982-11-06 1983-06-22 Shock wave reflector

Country Status (4)

Country Link
US (1) US4570634A (en)
EP (1) EP0108190B1 (en)
JP (1) JPS5988146A (en)
DE (2) DE3241026C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623080A1 (en) * 1987-11-16 1989-05-19 Technomed Int Sa METHOD FOR MANUFACTURING INDOLOR SHOCKWAVE GENERATING DEVICE AND DEVICE AND APPARATUS THUS MANUFACTURED
WO1990004359A2 (en) * 1988-10-17 1990-05-03 Storz Medical Ag Device for generating focused acoustic pressure waves
USRE33590E (en) * 1983-12-14 1991-05-21 Edap International, S.A. Method for examining, localizing and treating with ultrasound
US5080101A (en) * 1983-12-14 1992-01-14 Edap International, S.A. Method for examining and aiming treatment with untrasound
US5150712A (en) * 1983-12-14 1992-09-29 Edap International, S.A. Apparatus for examining and localizing tumors using ultra sounds, comprising a device for localized hyperthermia treatment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8400504A (en) * 1984-02-16 1985-09-16 Optische Ind De Oude Delft Nv DEVICE FOR NON-TOGETIC GRINDING OF CONCREMENTS IN A BODY.
DE3617032C2 (en) * 1985-05-24 1997-06-05 Elscint Ltd Lithotripsy device with extracorporeal shock wave generator
DE3544344A1 (en) * 1985-12-14 1987-06-19 Dornier Medizintechnik DEVICE FOR TROMBOISING BY SHOCK WAVE
FR2600520B1 (en) * 1986-06-30 1990-09-21 Technomed Int Sa APPARATUS FOR GENERATING HIGH FREQUENCY SHOCK WAVE IN A LIQUID FOR THE REMOTE DESTRUCTION OF TARGETS, SUCH AS CONCRETIONS HAVING ELECTRIC POWER SUPPLY CONNECTIONS WITHIN A TUBULAR ELEMENT LIMITING OR PREVENTING ELECTROMAGNETIC LEAKS
CS261485B1 (en) * 1986-10-29 1989-02-10 Jiri Mudr Rndr Benes Device for clinic out-of-body lithotripsy of gall stones
DE3900433A1 (en) * 1989-01-10 1990-07-12 Schubert Werner Method and device for treating disorders with ultrasonic waves
SE465552B (en) * 1989-03-21 1991-09-30 Hans Wiksell DEVICE FOR SUBDIVISION OF CONCRETE IN THE BODY OF A PATIENT
US5065761A (en) * 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
US4945898A (en) * 1989-07-12 1990-08-07 Diasonics, Inc. Power supply
US6755796B2 (en) 1999-02-07 2004-06-29 Medispec Ltd. Pressure-pulse therapy apparatus
IL128404A0 (en) * 1999-02-07 2000-01-31 Spector Avner Device for transmission of shock waves on to large surfaces of human tissue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302163A (en) * 1965-08-31 1967-01-31 Jr Daniel E Andrews Broad band acoustic transducer
DE2508494A1 (en) * 1975-02-27 1976-09-02 Hansrichard Dipl Phys D Schulz Focuser for electromagnetic or mechanical waves - for therapeutic local hyper therapy of human tissue with ultrasonic or microwaves
DE2538960A1 (en) * 1975-09-02 1977-04-07 Dornier System Gmbh Therapeutic destruction of concretions by impulse laser - uses elliptical focussing chamber with shock waves produced at focal point

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264681B (en) * 1961-07-05 1968-03-28 Siemens Ag Ultrasonic mirror-optical system for the transmission and reception of ultrasonic waves intended for medical ultrasound diagnosis according to the pulse-echo method
CH574734A5 (en) * 1973-10-12 1976-04-30 Dornier System Gmbh
US4311147A (en) * 1979-05-26 1982-01-19 Richard Wolf Gmbh Apparatus for contact-free disintegration of kidney stones or other calculi

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302163A (en) * 1965-08-31 1967-01-31 Jr Daniel E Andrews Broad band acoustic transducer
DE2508494A1 (en) * 1975-02-27 1976-09-02 Hansrichard Dipl Phys D Schulz Focuser for electromagnetic or mechanical waves - for therapeutic local hyper therapy of human tissue with ultrasonic or microwaves
DE2538960A1 (en) * 1975-09-02 1977-04-07 Dornier System Gmbh Therapeutic destruction of concretions by impulse laser - uses elliptical focussing chamber with shock waves produced at focal point

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIOMEDIZINISCHE TECHNIK, Band 22, Nr. 7/8, Juli/August 1977, Seiten 164-169 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111822A (en) * 1983-12-14 1992-05-12 Edap International, S.A. Piezoelectric article
US5080102A (en) * 1983-12-14 1992-01-14 Edap International, S.A. Examining, localizing and treatment with ultrasound
US5150712A (en) * 1983-12-14 1992-09-29 Edap International, S.A. Apparatus for examining and localizing tumors using ultra sounds, comprising a device for localized hyperthermia treatment
US5080101A (en) * 1983-12-14 1992-01-14 Edap International, S.A. Method for examining and aiming treatment with untrasound
US5143073A (en) * 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
USRE33590E (en) * 1983-12-14 1991-05-21 Edap International, S.A. Method for examining, localizing and treating with ultrasound
WO1989005026A1 (en) * 1987-11-16 1989-06-01 Technomed International S.A. Device for generating shock waves fitted with an ellipsoidal reflector
FR2623080A1 (en) * 1987-11-16 1989-05-19 Technomed Int Sa METHOD FOR MANUFACTURING INDOLOR SHOCKWAVE GENERATING DEVICE AND DEVICE AND APPARATUS THUS MANUFACTURED
US5233980A (en) * 1987-11-16 1993-08-10 Technomed International Societe Anonyme Apparatus and method for generating shockwaves for the destruction of targets, particularly in extracorporeal lithotripsy
EP0369177A3 (en) * 1988-10-17 1990-08-16 Storz Medical Ag Focused acoustic pressure wave generator
WO1990004359A3 (en) * 1988-10-17 1990-06-28 Storz Medical Ag Device for generating focused acoustic pressure waves
EP0369177A2 (en) * 1988-10-17 1990-05-23 Storz Medical Ag Focused acoustic pressure wave generator
WO1990004359A2 (en) * 1988-10-17 1990-05-03 Storz Medical Ag Device for generating focused acoustic pressure waves
US8099154B1 (en) 1988-10-17 2012-01-17 Storz Medical Ag Apparatus for generating focused acoustical pressure waves

Also Published As

Publication number Publication date
JPH0417660B2 (en) 1992-03-26
EP0108190A3 (en) 1984-07-25
DE3241026A1 (en) 1984-05-10
DE3366440D1 (en) 1986-10-30
US4570634A (en) 1986-02-18
DE3241026C2 (en) 1986-12-04
JPS5988146A (en) 1984-05-22
EP0108190B1 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
EP0108190B1 (en) Shock wave reflector
DE3320998C2 (en) Device for adapting a shock wave field
US4972826A (en) Shock wave generator for an extracorporeal lithotripsy apparatus
DE3240691C1 (en) Device for generating shock wave pulse trains
EP0298334A1 (en) Shock wave generator
DE3447440A1 (en) SHOCK SHAFT PIPE FOR THE CRUSHING OF CONCRETE
DE2538960C2 (en) Device for the contactless smashing of calculus in a living being
DE3501838A1 (en) DEVICE FOR THE GENERATION OF TIMED SHOCK SHAFTS
EP0268019A1 (en) Apparatus for disintegrating a fluid-suspended solid body
DE3320935A1 (en) ULTRASONIC SENSOR
DE1487569A1 (en) Ultrasonic transducer
DE19702593C2 (en) Method and device for generating shock waves for technical, preferably medical applications
DE3437488A1 (en) SOUND TRANSMITTER
DE1648056A1 (en) Single-wire depth gauge working with mechanical shafts
EP0210358B1 (en) Acoustic focussing device
DE2150897B2 (en) Electroacoustic transducer arrangement
DE3739393A1 (en) Lithotripter with adjustable focusing
DE3911408A1 (en) Measuring tube for ultrasonic flow measurements
EP1337998B1 (en) Ultrasonic transducer and ultrasonic flowmeter
JPS62253045A (en) Shock wave source
DE3833862C2 (en)
DE3146627A1 (en) Circuit and operation thereof for generating an electrical discharge in the nsec range
Wu Calculation of acoustic radiation force generated by focused beams using the ray acoustics approach
DE674454C (en) Underwater sound transmitter
DE2610061A1 (en) Exploding wire shock wave focussing mirror - is used with circular wire loop and consists of torus with elliptical reflecting surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19840829

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3366440

Country of ref document: DE

Date of ref document: 19861030

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890511

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 7

Ref country code: GB

Payment date: 19890630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920812

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990630

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST