DE10010284C2 - Method for producing a semiconductor component with a capacitor - Google Patents

Method for producing a semiconductor component with a capacitor

Info

Publication number
DE10010284C2
DE10010284C2 DE10010284A DE10010284A DE10010284C2 DE 10010284 C2 DE10010284 C2 DE 10010284C2 DE 10010284 A DE10010284 A DE 10010284A DE 10010284 A DE10010284 A DE 10010284A DE 10010284 C2 DE10010284 C2 DE 10010284C2
Authority
DE
Germany
Prior art keywords
capacitor
oxide layer
layer
oxide
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10010284A
Other languages
German (de)
Other versions
DE10010284A1 (en
Inventor
Joachim Hoepfner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Priority claimed from DE10065976A external-priority patent/DE10065976A1/en
Priority to DE10010284A priority Critical patent/DE10010284C2/en
Priority to DE10065976A priority patent/DE10065976A1/en
Priority to TW090102893A priority patent/TW502399B/en
Priority to EP01104254A priority patent/EP1128428B1/en
Priority to DE50113179T priority patent/DE50113179D1/en
Priority to JP2001049279A priority patent/JP3990542B2/en
Priority to CNB011049421A priority patent/CN1174472C/en
Priority to KR10-2001-0009483A priority patent/KR100397881B1/en
Priority to US09/793,351 priority patent/US6316275B2/en
Publication of DE10010284A1 publication Critical patent/DE10010284A1/en
Publication of DE10010284C2 publication Critical patent/DE10010284C2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Halbleiterbauelements nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing a Semiconductor component according to the preamble of the claim 1.

Konventionelle mikroelektronische Halbleiterspeicher-Bau­ elemente (DRAMs) bestehen im wesentlichen aus einem Schalt­ transistor und einem Speicherkondensator. Die gespeicherte Information wird dabei durch den Ladungszustand des Speicher­ kondensators repräsentiert. Aufgrund von Entladungsvorgängen muß der Ladungszustand einer (flüchtigen) DRAM-Speicherzelle ständig erneuert werden.Conventional microelectronic semiconductor memory construction elements (DRAMs) essentially consist of a circuit transistor and a storage capacitor. The saved Information is given by the state of charge of the memory capacitor represents. Due to discharge processes the state of charge of a (volatile) DRAM memory cell are constantly renewed.

Als Kondensator-Dielektrika werden in DRAMs üblicherweise O­ xid- oder Nitridschichten verwendet, die eine Dielektrizi­ tätskonstante von maximal etwa 8 aufweisen. Zur Verkleinerung des Speicherkondensators sowie zur Herstellung von nicht­ flüchtigen Speichern werden "neuartige", metalloxidhaltige Kondensatormaterialien (Paraelektrika oder Ferroelektrika) mit deutlich höheren Dielektrizitätskonstanten benötigt. Be­ kannte Beispiele für ferroelektrische Kondensatormaterialien sind SrBi2(Ta,Nb)2O9 (SBT oder SBTN), Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BTO), ein bekanntes Beispiel für ein paraelektri­ sches Hoch-Epsylon-Kondensatormaterial ist (Ba,Sr)TiO3 (BST).Oxide or nitride layers are usually used as capacitor dielectrics in DRAMs, which have a dielectric constant of at most about 8. In order to reduce the size of the storage capacitor and to manufacture non-volatile memories, "novel", metal oxide-containing capacitor materials (paraelectrics or ferroelectrics) with significantly higher dielectric constants are required. Known examples of ferroelectric capacitor materials are SrBi 2 (Ta, Nb) 2 O 9 (SBT or SBTN), Pb (Zr, Ti) O 3 (PZT), Bi 4 Ti 3 O 12 (BTO), a known example of a Paraelectric high-Epsylon capacitor material is (Ba, Sr) TiO 3 (BST).

Die Verwendung dieser neuartigen Kondensatormaterialien be­ reitet technologische Schwierigkeiten. Zunächst lassen sich diese neuartigen Materialien nicht mehr mit dem traditionel­ len Elektrodenmaterial polykristallines Silizium kombinieren. Deshalb müssen inerte Elektrodenmaterialien, wie beispielsweise Platin (Pt) oder leitfähige Metalloxide (z. B. RuO2) eingesetzt werden. Der Grund hierfür ist, dass die neuartigen Kondensatormaterialien nach dem Abscheiden in einer Sauer­ stoffhaltigen Atmosphäre bei Temperaturen von etwa 550-800°C gegebenenfalls mehrfach getempert ("konditioniert") werden müssen, und nur die genannten inerten Elektrodenmaterialien eine ausreichende Temperaturstabilität aufweisen, um eine un­ erwünschte chemische Reaktion zwischen Elektrodenmaterial und Kondensatormaterial zu vermeiden.The use of these novel capacitor materials creates technological difficulties. First of all, these new materials can no longer be combined with the traditional electrode material polycrystalline silicon. Inert electrode materials such as platinum (Pt) or conductive metal oxides (e.g. RuO 2 ) must therefore be used. The reason for this is that the novel capacitor materials may have to be annealed ("conditioned") several times ("conditioned") after being deposited in an oxygen-containing atmosphere at temperatures of about 550-800 ° C., and only the inert electrode materials mentioned have sufficient temperature stability to achieve a to avoid an undesired chemical reaction between electrode material and capacitor material.

Eine weitere Schwierigkeit bei der Herstellung derartiger Speicherkondensatoren beruht darauf, dass metalloxidhaltige Kondensatormaterialien in der Regel eine hohe Empfindlichkeit gegenüber Wasserstoff aufweisen. Nach der Bildung des Spei­ cherkondensators sind jedoch Prozessschritte durchzuführen, die in Wasserstoff-haltiger Umgebung stattfinden. Nachteilig ist dabei, dass die Pt-Elektroden gegenüber Wasserstoff durchlässig sind und daher keinen wirksamen Schutz vor einer Wasserstoff-Schädigung des Kondensatormaterials bilden.Another difficulty in making such Storage capacitors are based on the fact that they contain metal oxide Capacitor materials usually have high sensitivity towards hydrogen. After the formation of the Spei However, process steps must be carried out that take place in a hydrogen-containing environment. adversely is that the Pt electrodes are hydrogen are permeable and therefore no effective protection against Form hydrogen damage to the capacitor material.

Grundsätzlich bieten sich verschiedene Lösungsmöglichkeiten für das letztgenannte Problem an. Aus materialtechnologischer Sicht kann versucht werden, ein Elektrodenmaterial zu finden, das nicht durchlässig für Wasserstoff ist, oder ein Die­ lektrikummaterial zu finden, das nicht gegenüber Wasserstoff empfindlich ist. Verfahrenstechnologisch kann versucht wer­ den, nach der Bildung des Speicherkondensators jegliche Pro­ zessschritte zu vermeiden, die in Wasserstoff-haltiger Umge­ bung ablaufen. Bei sämtlichen dieser Lösungsvarianten ergeben sich in der Praxis jedoch weitere gravierende Schwierigkei­ ten. Basically, there are various possible solutions for the latter problem. From material technology View can be tried to find an electrode material that is not permeable to hydrogen, or a die to find electrical material that is not compared to hydrogen is sensitive. Technologically, anyone can try the, after the formation of the storage capacitor any Pro avoid steps in hydrogen-containing vice exercise. Result in all of these solution variants in practice, however, there are further serious difficulties th.  

Im Stand der Technik wurde bereits versucht, das Problem durch Abscheiden einer Wasserstoff-Barriereschicht auf dem Speicherkondensator zu lösen. In der den nächstliegenden Stand der Technik bildenden U.S.-Patentschrift 5,523,595 wird ein Herstellungsverfahren für ein Halbleiterbauelement mit einem ferroelektrischen Speicherkondensator beschrieben. Nach dem Aufbau des Speicherkondensators wird über diesem mittels eines CVD-Prozesses eine Wasserstoff-Barriereschicht beste­ hend aus TiON erzeugt. Durch die Barriereschicht wird das Eindringen von Wasserstoff durch die obere Pt-Elektrode des Speicherkondensators verhindert. Nachteilig ist jedoch, daß ein Eindringen von Wasserstoff durch die untere Pt-Elektrode sowie ein seitliches Eindringen von Wasserstoff in das Ferro­ elektrikum weiterhin möglich sind. Ein vollständiger Schutz des Kondensator-Ferroelektrikums gegenüber einer Degradation durch Wasserstoff ist daher nicht gegeben.The problem has already been tried in the prior art by depositing a hydrogen barrier layer on the Storage capacitor to solve. In the closest U.S. Patent 5,523,595 a manufacturing process for a semiconductor device a ferroelectric storage capacitor. To the structure of the storage capacitor is above this the best hydrogen barrier layer in a CVD process generated from TiON. The barrier layer will Penetration of hydrogen through the top Pt electrode of the Storage capacitor prevented. The disadvantage, however, is that penetration of hydrogen through the lower Pt electrode and a lateral penetration of hydrogen into the ferro electrical are still possible. Complete protection of the capacitor ferroelectric against degradation there is therefore no hydrogen.

In der JP 9-219498 A (US 6 048 764) wird ein Verfahren zur Herstellung eines ferroelektrischen Speicherbauelements beschrieben, bei wel­ chem nach der Herstellung eines Auswahltransistors auf einem Halbleitersubstrat in eine planarisierende Isolationsschicht Stickstoffatome durch ein Plasma mit dem Ziel eindiffundiert werden, eine Schutzschicht gegen einen später im Verlaufe des Prozesses erfolgenden Ätzangriff mit Flusssäure zu bilden. Oberhalb dieser Schutzschicht wird ein mit dem Auswahltransi­ stor verbundener Speicherkondensator gebildet.JP 9-219498 A (US 6 048 764) describes a method for producing a ferroelectric memory device described, at wel chem after making a selection transistor on a Semiconductor substrate in a planarizing insulation layer Nitrogen atoms diffused through a plasma with the aim become a protective layer against one later in the course of the Process to form etching attack with hydrofluoric acid. Above this protective layer there is a selection transi stor connected storage capacitor formed.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Halbleiterbauelements anzugeben, bei wel­ chem ein Speicherkondensator, der ein ferroelektrisches oder paraelektrisches Kondensatormatetial verwendet, ausreichend gegen das Eindringen von Wasserstoff geschützt wird. The invention has for its object a method for Specify manufacture of a semiconductor device, at wel chem a storage capacitor that is a ferroelectric or Paraelectric capacitor material used, sufficient is protected against the ingress of hydrogen.  

Die der Erfindung zugrundeliegende Aufgabenstellung wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 ge­ löst.The problem underlying the invention is by the characterizing features of claim 1 ge solves.

Ein wesentlicher Gesichtspunkt der Erfindung besteht darin, daß zum Schutz gegen ein Eindringen von Wasserstoff in das Kondensatormaterial eine über dem Kondensator abgeschiedene Oxidschicht mit einem Barrierestoff dotiert wird. Durch die in die Oxidschicht eingebrachten Barrierestoff-Atome wird die dotierte Oxidschicht weitestgehend undurchlässig gegenüber Wasserstoff. An essential aspect of the invention is that to protect against hydrogen intrusion into the Capacitor material is deposited over the capacitor Oxide layer is doped with a barrier material. Through the Atoms introduced into the oxide layer become the doped oxide layer largely impermeable to Hydrogen.  

Mit dem Begriff "Dotierung" ist hier also nicht das Einbrin­ gen von Fremdatomen zur Veränderung der Leitfähigkeit (sog. p- oder n-Dotierung) sondern das Einbringen von Fremdatomen zur Verringerung der Diffusionsfähigkeit von Wasserstoff (in einer Oxidschicht) gemeint.So the term "endowment" is not a contribution here foreign atoms to change the conductivity (so-called. p- or n-doping) but the introduction of foreign atoms to reduce the diffusibility of hydrogen (in an oxide layer).

Gemäß der Erfindung wird eine erste dotierte Oxidschicht oberhalb des Kondensators ge­ bildet. Eine weitere Verbesserung besteht darin, unter dem Kondensator eine dünne zweite Oxidschicht abzu­ scheiden und diese ebenfalls zu dotieren.According to the invention, a first doped oxide layer above the capacitor forms. Another improvement is remove a thin second oxide layer under the capacitor divorce and also to endow them.

In diesem Fall kennzeichnet sich eine Verfah­ rensvariante dadurch, dass die erste dotierte Oxidschicht und die zweite dotierte Oxidschicht den Kondensator allseitig um­ schließen.In this case, a procedure is identified variant in that the first doped oxide layer and the second doped oxide layer around the capacitor on all sides conclude.

Vorzugsweise handelt es sich bei dem Barrierestoff um Stick­ stoff. In diesem Fall wird durch die Dotierung eine Nitridi­ sierung der ersten bzw. zweiten Oxidschicht realisiert. Gene­ rell können aber auch andere geeignete Stoffe, z. B. Edelgase, als Barrierestoff eingesetzt werden.The barrier material is preferably a stick material. In this case, the doping becomes a nitride Realization of the first or second oxide layer realized. Gene However, other suitable substances, e.g. B. noble gases, can be used as a barrier material.

Die Dotierung (bzw. Nitridisierung) der Oxidschichten erfolgt unter Zuhilfenahme einer den Barrierestoff enthaltenden Plas­ ma-Entladung. Die Plasma-Entladung ermöglicht, dass in kurzer Zeit (etwa 60 s) eine ausreichend hohe Barrierestoff-Konzen­ tration in der ersten und/oder zweiten Oxidschicht erzeugt wird, ohne dass dabei eine maximale Substrattemperatur im Be­ reich von 50-120°C überschritten werden muß. Die Plasma- Dotierung ist daher kompatibel mit herkömmlichen Photolack- Maskierungstechniken. Demzufolge kennzeichnet sich ein vorteilhafter Verfahrensablauf dadurch, dass vor der Plasma- Dotierung auf der ersten und gegebenenfalls zweiten Oxidschicht eine Maske aufgebracht wird, mittels welcher die Dotierung der O­ xidschicht strukturiert wird, und dass nachfolgend ein Oxid- Ätzschritt durchgeführt wird. Dadurch wird erreicht, dass bei dem Oxid-Ätzschritt weiterhin (d. h. wie im herkömmlichen Fall ohne Wasserstoff-Barriere) ausschließlich Oxid-Schichtbe­ reiche geätzt werden müssen. Bei der Verwendung z. B. einer TiON-Barriereschicht müßten hingegen alternative Ätzprozedu­ ren zum bereichsweisen Entfernen dieser Schicht eingesetzt werden (um dies zu vermeiden ist diese Schicht in der ein­ gangs genannten U.S.-Patentschrift oberhalb der oberen Anschlußebene angeordnet, wodurch wiederum ihre Wirksamkeit vermindert wird), und bei Verwendung von Sandwich-Schichten (z. B. Nitrid-Oxid-Mehrfachschichten) würden aufgrund der wechselnden Schichtzusammensetzung Unterätzungen bzw. Über­ hänge im Bereich der Schichtübergänge auftreten, die bei nachfolgenden Prozessschritten (z. B. dem Befüllen eines her­ ausgeätzten Kontaktlochs) ausgesprochen störend wirken.The oxide layers are doped (or nitrided) with the help of a plas containing the barrier material ma-discharge. The plasma discharge enables that in short Time (about 60 s) a sufficiently high barrier material concentration tration generated in the first and / or second oxide layer without a maximum substrate temperature in the loading range of 50-120 ° C must be exceeded. The plasma Doping is therefore compatible with conventional photoresist Masking techniques. Accordingly, an advantageous one is identified  Process sequence in that before the plasma Doping on the first and optionally second oxide layer Mask is applied, by means of which the doping of the O oxide layer is structured, and that subsequently an oxide Etching step is carried out. This ensures that at the oxide etching step (i.e., as in the conventional case without hydrogen barrier) only oxide layers rich must be etched. When using z. B. one TiON barrier layers, however, would have to have alternative etching procedures Ren to remove this layer in areas (to avoid this, this layer is in the one U.S. Patent above mentioned above Connection level arranged, which in turn makes their effectiveness is reduced), and when using sandwich layers (e.g. nitride oxide multilayers) would be due to the changing layer composition undercuts or over slopes in the area of the layer transitions that occur at subsequent process steps (e.g. filling one etched contact hole) are extremely disruptive.

Im Falle der angesprochenen Oxid-Ätzung eines Kontaktlochs mittels einer zuvor aufgebrachten (Lack-)Maske kennzeichnet sich eine vorteilhafte Verfahrensvariante dadurch, dass die geschaffene Struktur ein weiteres Mal der Plasma-Dotierung mit Barrierestoff ausgesetzt wird. Bei diesem Vorgang werden die Lochwände des Kontaktlochs dotiert (z. B. nitridisiert). Der Vorteil dieser Maßnahme besteht darin, dass nun auch durch die Lochwände des Kontaktloches kein Wasserstoff durch­ treten und zu dem Kondensatormaterial hindiffundieren kann. Dies ist wichtig, weil gerade bei dem nachfolgenden Befüllen des Kontaktlochs, beispielsweise mit Wolfram (W), relativ große Mengen von Wasserstoff freigesetzt werden. In the case of the oxide etching of a contact hole with a previously applied (lacquer) mask an advantageous process variant in that the created structure one more time of plasma doping exposed with barrier fabric. In this process the hole walls of the contact hole are doped (e.g. nitrided). The advantage of this measure is that now too no hydrogen through through the hole walls of the contact hole can occur and diffuse to the capacitor material. This is important because especially during the subsequent filling the contact hole, for example with tungsten (W), relative large amounts of hydrogen are released.  

Die Plasma-Dotierung kann zweckmäßigerweise entweder durch ein PIII-(Plasmaimmersions-Ionenimplantations-)Verfahren oder durch ein PLAD-(sog. Plasmadotier-)Verfahren herbeigeführt werden. Beide genannten Verfahren ermöglichen die gezielte Einstellung einer isotropen ("Plasmawolke") und einer ani­ sotropen ("ballistische Implantation") Dotierkomponente in Abhängigkeit von den gewählten Verfahrensparametern. Durch die Erhöhung der isotropen Dotierkomponente lassen sich bei­ spielsweise auch unregelmäßige Oberflächentopologien (z. B. Gräben, Löcher usw.) gleichmäßig dotieren.The plasma doping can expediently either by a PIII (plasma immersion ion implantation) procedure or brought about by a PLAD (so-called plasma doping) process become. Both of the methods mentioned enable the targeted Setting an isotropic ("plasma cloud") and ani sotropic ("ballistic implantation") doping component in Dependence on the selected process parameters. By the increase in the isotropic doping component can be for example, irregular surface topologies (e.g. Trenches, holes, etc.) evenly doped.

Weitere vorteilhafte Maßnahmen sind in den Unteransprüchen angegeben.Further advantageous measures are in the subclaims specified.

Die Erfindung wird im folgenden anhand von Ausführungsbei­ spielen unter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigt:The invention is described below with reference to exemplary embodiments play explained with reference to the drawing; in this shows:

Fig. 1 eine Querschnittsansicht zur Erläuterung von zwei im Stand der Technik bekannten, für die Anwendung des erfindungsgemäßen Verfahrens ge­ eigneten Aufbaukonzepten einer Speicherzelle; und Fig. 1 is a cross-sectional view for explaining two known in the prior art, ge suitable for the application of the inventive method construction concepts of a memory cell; and

Fig. 2A bis E Querschittsansichten eines erfindungsgemäß hergestellten Halbleiterbauelements nach einem der in Fig. 1 gezeigten Aufbaukonzepte in un­ terschiedlichen Stadien des erfindungsgemäßen Verfahrens. FIGS. 2A-E Querschittsansichten a semiconductor device according to the invention according to any one of the design concepts shown in Fig. 1 in un terschiedlichen stages of the method according to the invention.

Anhand Fig. 1 werden zwei an sich bekannte Aufbaukonzepte für Speicherzellen erläutert, bei denen jeweils das erfindungsge­ mäße Verfahren zur Anwendung gebracht werden kann. Den beiden Aufbaukonzepten ist gemeinsam, dass ein Schalttransistor S1, S2 in einer unteren Ebene unmittelbar auf einem Halbleiter­ substrat 1 geformt ist und ein Speicherkondensator K1, K2 in einer oberen Ebene angeordnet ist, wobei die beiden Ebenen durch eine dazwischenliegende Isolationsschicht 4 voneinander getrennt sind.With reference to FIG. 1, two per se known design concepts are discussed for memory cells in which the erfindungsge Permitted method can be put to use, respectively. The two design concepts have in common that a switching transistor S1, S2 is formed in a lower level directly on a semiconductor substrate 1 and a storage capacitor K1, K2 is arranged in an upper level, the two levels being separated from one another by an intermediate insulation layer 4 .

Gemäß dem ersten Aufbaukonzept ("stacked cell") sind der Schalttransistor S1 und der Speicherkondensator K1 im wesent­ lichen direkt übereinander angeordnet, wobei die untere E­ lektrode 31 des Speicherkondensators S1 über ein mit einem leitfähigen Material gefülltes Kontaktloch 41 ("plug") mit einem Drain-Gebiet 21 des MOS-Transistors S1, 2 durch die I­ solationsschicht 4 hindurch elektrisch verbunden ist.According to the first design concept (“stacked cell”), the switching transistor S1 and the storage capacitor K1 are essentially arranged directly one above the other, the lower electrode 31 of the storage capacitor S1 having a contact hole 41 (“plug”) filled with a conductive material Drain region 21 of the MOS transistor S1, 2 is electrically connected through the insulation layer 4.

Gemäß dem zweiten Aufbaukonzept ("offset cell") sind der Schalttransistor S2 und der Speicherkondensator K2 voneinan­ der versetzt angeordnet, wobei die obere Elektrode 33 des Speicherkondensators K2 durch zwei Kontaktlöcher mit dem Drain-Gebiet 21 des MOS-Transistors S2, 2 elektrisch verbun­ den ist.According to the second design concept ("offset cell"), the switching transistor S2 and the storage capacitor K2 are arranged offset from one another, the upper electrode 33 of the storage capacitor K2 being electrically connected to the drain region 21 of the MOS transistor S2, 2 through two contact holes is.

In Fig. 1 sind beide Aufbaukonzepte lediglich aus Gründen der vereinfachten Darstellung in einem einzigen Bauelement ver­ eint dargestellt.In Fig. 1, both construction concepts are shown ver for the sake of simplicity in a single component.

Im folgenden wird die Bauelementstruktur und deren Herstel­ lungsweise anhand der "stacked cell" näher erläutert. Die Be­ schreibung ist aber größtenteils auf die "offset cell" über­ tragbar. Vergleichbare Bauelemente der "offset cell" sind da­ her mit denselben Bezugszeichen gekennzeichnet. The following is the component structure and its manufacture explained in more detail using the "stacked cell". The Be spelling is mostly over to the "offset cell" portable. Comparable components of the "offset cell" are there marked here with the same reference numerals.  

Auf einem Halbleitersubstrat 1 wird zunächst der bereits er­ wähnte MOS-Transistor 2 hergestellt, indem durch eine n- oder p-Dotierung das Dram-Gebiet 21 und ein Source-Gebiet 23 ge­ bildet werden, zwischen denen ein Kanal besteht, welcher durch ein über dem Kanal angeordnetes Gate 22 in seiner Leit­ fähigkeit gesteuert werden kann. Das Gate 22 kann durch eine Wortleitung WL des Speicherbauelements gebildet oder mit die­ ser verbunden sein. Das Source-Gebiet 23 ist mit einer Bit- Leitung BL des Speicherbauelements verbunden.On a semiconductor substrate 1 , the MOS transistor 2 already mentioned is first produced by forming the dram region 21 and a source region 23 by an n- or p-doping, between which there is a channel which is formed by a the channel arranged gate 22 can be controlled in its Leit ability. The gate 22 can be formed by a word line WL of the memory component or can be connected to it. The source region 23 is connected to a bit line BL of the memory component.

Der MOS-Transistor 2 wird anschließend mit der planarisieren­ den Isolationsschicht 4, beispielsweise einer Oxid­ schicht, bedeckt.The MOS transistor 2 is then covered with the planarizing insulation layer 4 , for example an oxide layer.

Auf der ersten Isolationsschicht 4 wird ein Speicherkondensator 3 geformt. Zu diesem Zweck wird in die erste Isolationsschicht 4 zu­ nächst das Kontaktloch 41 geätzt und mit einem leitfähigen Material, beispielsweise polykristallinem Silizium, gefüllt. über dem gefüllten Kontaktloch 41 (eventuell durch eine nicht dargestellte Barriereschicht vom "plug" getrennt) wird sodann die untere Elektrode 31 aufgebracht.A storage capacitor 3 is formed on the first insulation layer 4 . For this purpose, the contact hole 41 is first etched into the first insulation layer 4 and filled with a conductive material, for example polycrystalline silicon. The lower electrode 31 is then applied over the filled contact hole 41 (possibly separated from the “plug” by a barrier layer, not shown).

Auf die untere Elektrode 31 wird eine dielektrische Schicht 32 eines ferroelektrischen oder paraelektrischen Materials, beispielsweise durch MOCVD oder durch ein Sputter-Verfahren, abgeschieden. Die dielektrische Schicht 32 bildet das Konden­ satordielektrikum. Oberhalb der dielektrischen Schicht 32 wird eine obere Elektrode 33 ganzflächig abgeschieden. Die erhaltene Struktur wird schließlich mit einer weiteren plan­ arisierenden Isolationsschicht 5, beispielsweise ebenfalls bestehend aus SiO2, bedeckt. A dielectric layer 32 of a ferroelectric or paraelectric material, for example by MOCVD or by a sputtering method, is deposited on the lower electrode 31 . The dielectric layer 32 forms the capacitor dielectric. An upper electrode 33 is deposited over the entire surface above the dielectric layer 32 . The structure obtained is finally covered with a further planarizing insulation layer 5 , for example likewise consisting of SiO 2 .

In der oberen Isolationsschicht 5 wird ein weiteres Kontakt­ loch 51 geformt, durch das die obere Elektrode 33 des Spei­ cherkondensators 3 mittels eines geeigneten leitfähigen Mate­ rials mit einem äußeren elektrischen Anschluß P (gemeinsame Kondensatorplatte) verbunden werden kann.In the upper insulation layer 5 , a further contact hole 51 is formed through which the upper electrode 33 of the storage capacitor 3 can be connected by means of a suitable conductive material to an external electrical connection P (common capacitor plate).

Schließlich wird das Source-Gebiet 23 des MOS-Transistors 2 mit der Bit-Leitung BL verbunden, indem ein sich durch beide Isolationsschichten 4 und 5 erstreckendes Kontaktloch 45 ge­ bildet und mit einem leitfähigen Material gefüllt wird.Finally, the source region 23 of the MOS transistor 2 is connected to the bit line BL by forming a contact hole 45 extending through both insulation layers 4 and 5 and filling it with a conductive material.

Bei der im rechten Teil der Fig. 1 dargestellten "offset cell"-Struktur wird ein mit dem Kontaktloch 45 vergleichbares Kontaktloch 46 gebildet, um das Drain-Gebiet 21 des MOS- Transistors S2 mittels einer leitenden Querverbindung 8 und eines weiteren, sich durch die obere Isolationsschicht 5 erstreckenden Kontaktlochs 52 mit der oberen Elektrode 33 des Speicherkondensators S2, 2 zu verbinden.In the "offset cell" structure shown in the right part of FIG. 1, a contact hole 46 comparable to the contact hole 45 is formed in order to cover the drain region 21 of the MOS transistor S2 by means of a conductive cross connection 8 and another to connect the upper insulation layer 5 extending contact hole 52 to the upper electrode 33 of the storage capacitor S2, 2.

Bei beiden Aufbaukonzepten ist es somit erforderlich, eine Mehrzahl von Kontaktlöchern 41, 51, 45, 46, 52 mit einem e­ lektrisch leitfähigen Kontaktlochmaterial zu füllen. Insbe­ sondere bei kleineren Strukturgrößen eignet sich in einem CVD-Prozeß abgeschiedenes Wolfram (W) gut als Kontaktlochma­ terial. Dabei tritt jedoch das Problem auf, dass die W- Abscheidung in dem CVD-(chemical vapor deposition-)Prozeß in einer Wasserstoffhaltigen Atmosphäre abläuft, der Wasser­ stoff die Pt-Elektroden 31, 33 durchdringen kann und es auf­ grund der katalytischen Eigenschaften des Platins zu einer Schädigung des Kondensatormaterials 32 kommen kann.With both construction concepts, it is therefore necessary to fill a plurality of contact holes 41 , 51 , 45 , 46 , 52 with an electrically conductive contact hole material. In particular with smaller structure sizes, tungsten (W) deposited in a CVD process is well suited as contact hole material. However, the problem arises that the W deposition in the CVD (chemical vapor deposition) process takes place in a hydrogen-containing atmosphere, the hydrogen can penetrate the Pt electrodes 31 , 33 and it due to the catalytic properties of the platinum can damage the capacitor material 32 .

Wird z. B. SBT als ferroelektrisches Kondensatormaterial ein­ gesetzt, kommt es durch die Reduktion von BiOx zur Schädigung dieses Materials. Für andere metalloxidhaltigen Kondensator­ materialien existieren analoge Schädigungsmechanismen, die ebenfalls auf das Eindringen von Wasserstoff und die kataly­ tische Wirkung von Pt (oder anderer inerter Elektrodenmateri­ alien) zurückzuführen sind.Is z. B. SBT as a ferroelectric capacitor material, there is damage to this material by the reduction of BiO x . Similar damage mechanisms exist for other metal oxide-containing capacitor materials, which are also due to the penetration of hydrogen and the catalytic effect of Pt (or other inert electrode materials).

Im folgenden wird anhand der Fig. 2A bis 2E am Beispiel der "offset cell" erläutert, wie durch das erfindungsgemäße Ver­ fahren der Plasma-gestützten Dotierung einer oder mehrerer Oxidschichten das Eindringen von Wasserstoff in das Kondensa­ tormaterial 32 unterbunden werden kann. Zur einfacheren Er­ läuterung wird von Stickstoff als Barrierestoff ausgegangen und es werden Verfahrensschritte, die bereits im Zusammenhang mit dem in Fig. 1 dargestellten Stand der Technik erläutert wurden, teilweise weggelassen.2A to 2E in the following the example of the "offset cell" is reference to FIGS. Explains how through the invention Ver the plasma-assisted drive doping the penetration of hydrogen into the Kondensa can be suppressed door material 32 of one or more oxide layers. For easier explanation, nitrogen is assumed to be the barrier material and process steps which have already been explained in connection with the prior art shown in FIG. 1 are partially omitted.

Nach Fertigstellung des Schalttransistors S2 (dargestellt sind in den Fig. 2A bis 2E die Wortleitung WL und das Drain- Gebiet 21 desselben) wird gemäß Fig. 2A zunächst die bereits anhand Fig. 1 erläuterte Abscheidung der ersten Isolationsschicht 4 mittels üblicher Techniken vorgenommen. Zur Ausbildung einer ebenen Oberfläche wird die Isolationsschicht 4 nachfolgend durch CMP (chemisch-mechanisches Polieren) planarisiert.After the completion of the switching transistor S2 (the word line WL and the drain region 21 thereof are shown in FIGS . 2A to 2E), the deposition of the first insulation layer 4 already explained with reference to FIG. 1 is first carried out according to FIG. 2A by means of conventional techniques. To form a flat surface, the insulation layer 4 is subsequently planarized by CMP (chemical mechanical polishing).

In einem nachfolgenden Schritt wird die Isolationsschicht 4 mit ei­ ner Lackmaskenschicht überzogen, welche sodann z. B. auf pho­ tolithographischem Wege strukturiert wird. Dabei wird dafür gesorgt, dass an derjenigen Stelle, an welcher später das Kontaktloch 46 gebildet werden soll, eine Maskenstruktur 6 stehenbleibt.In a subsequent step, the insulation layer 4 is coated with egg ner lacquer mask layer, which then z. B. is structured by pho tolithographic means. This ensures that a mask structure 6 remains at the point at which the contact hole 46 is later to be formed.

Daraufhin wird der erfindungsgemäße Niedertemperatur-Nitridi­ sierungsschritt durchgeführt. Der Nitridisierungsschritt erfolgt bei einer Substrattemperatur von 50 bis maximal 120°C und ist daher kompatibel mit der eingesetzten Photomasken­ technik. Die Plasma-Nitridisierung bewirkt, dass außerhalb der Maskenstruktur 6 in einem oberflächennahen Bereich Stick­ stoff-Atome in die erste Isolationsschicht 4 eingebaut werden. Der so geschaffene nitridisierte Oberflächenbereich der ersten Isolationsschicht 4 ist mit dem Bezugszeichen 7A bezeichnet.The low-temperature nitriding step according to the invention is then carried out. The nitridization step takes place at a substrate temperature of 50 to a maximum of 120 ° C and is therefore compatible with the photomask technology used. The plasma nitridation has the effect that nitrogen atoms are installed in the first insulation layer 4 outside the mask structure 6 in a region near the surface. The thus created nitrided surface portion of the first insulating layer 4 is denoted by the reference numeral 7. A.

Während beim "stacked cell"-Konzept nun zunächst das Kontakt­ loch 41 gebildet, aufgefüllt, mit einer Barriereschicht ver­ sehen und darüber dann der Speicherkondensator K1 realisiert wird, wird in dem hier dargestellten Ausführungsbeispiel des "offset cell"-Konzepts nun sogleich der Speicherkondensator K2 aufgebaut. Zu diesem Zweck wird zunächst die untere Pt- Elektrode 31 auf dem nitridisierten Oberflächenbereich 7A der ersten Isolationsschicht 4 aufgebracht. Sodann wird die dielektri­ sche, insbesondere para- oder ferroelektrische Schicht 32, bestehend beispielsweise aus BST oder anderen geeigneten Ma­ terial wie z. B. SBTN, PZT, BTO usw., abgeschieden.While in the "stacked cell" concept, the contact hole 41 is first formed, filled, see ver with a barrier layer and then the storage capacitor K1 is realized, the storage capacitor K2 is now immediately implemented in the exemplary embodiment of the "offset cell" concept shown here built up. For this purpose, the lower Pt electrode 31 is first applied to the nitrided surface area 7 A of the first insulation layer 4 . Then the dielectric cal, in particular para- or ferroelectric layer 32 , consisting for example of BST or other suitable Ma material such. B. SBTN, PZT, BTO etc., deposited.

Auf die dielektrische Schicht 32 wird anschließend die obere Pt-Elektrode 33 abgeschieden und zusammen mit der dielektri­ schen Schicht 32 durch Photolithographie und Ätztechnik strukturiert. Die Abscheidung und Strukturierung der die­ lektrischen Schicht 32 und der oberen Pt-Elektrode 33 erfolgt vorzugsweise derart, dass beide Schichten sich zumindest auf einer Seite der unteren Elektrode 31 in lateraler Richtung über diese hinaus erstrecken und in Form einer Stufe an der unteren Elektrode 31 anliegen. Durch den Stufenbereich wird die wirksame Kondensatorfläche vergrößert.The upper Pt electrode 33 is then deposited on the dielectric layer 32 and structured together with the dielectric layer 32 by photolithography and etching technology. The deposition and structuring of the dielectric layer 32 and of the upper Pt electrode 33 is preferably carried out in such a way that both layers extend at least on one side of the lower electrode 31 in a lateral direction and lie in the form of a step on the lower electrode 31 , The effective capacitor area is increased by the step area.

Diese Struktur wird sodann mit einer dünnen zweiten Oxid­ schicht bestehend z. B. aus SiO2 überzogen. This structure is then layered with a thin second oxide z. B. coated with SiO 2 .

Im folgenden werden auf der zweiten Oxidschicht an geeigneten Stellen auf lithographischem Wege Photolack-Maskenstrukturen 9.1 und 9.2 erzeugt. Die Maskenstruktur 9.2 wird vorzugsweise mittig über dem Speicherkondensator K2 angebracht. Die Mas­ kenstruktur 9.1 überdeckt einen Bereich der zweiten Oxid­ schicht, welcher unmittelbar über dem nicht-nitridisierten Bereich der ersten nitridisierten Oxidschicht 7A liegt.In the following, photoresist mask structures 9.1 and 9.2 are produced on the second oxide layer at suitable locations by lithography. The mask structure 9.2 is preferably attached centrally over the storage capacitor K2. The Mas 9.1 kenstruktur layer covers a portion of the second oxide, which is located immediately above the non-nitrided region of the first nitrided oxide layer 7 A.

Die dünne zweite Oxidschicht wird anschließend ebenfalls ei­ ner Plasma-Nitridisierung unterzogen. Je nach Schichtdicke der zweiten Oxidschicht und den bei der Nitridisierung ver­ wendeten Verfahrensparametern wird diese in ihrer gesamten Dicke oder lediglich in einem oberflächennahen Bereich nitri­ disiert. Dabei wird die in Fig. 2B gezeigte nitridisierte zweite Oxidschicht 7B gebildet, welche unterhalb der Photo­ lack-Maskenstrukturen 9.1 und 9.2 weiterhin aus nicht-nitri­ disiertem Oxidmaterial besteht.The thin second oxide layer is then also subjected to plasma nitridization. Depending on the layer thickness of the second oxide layer and the process parameters used during nitridization, the latter is nitrided in its entire thickness or only in a region close to the surface. The nitridized second oxide layer 7 B shown in FIG. 2B is formed, which further consists of non-nitrided oxide material below the photoresist mask structures 9.1 and 9.2 .

Über der beschriebenen Struktur wird sodann die planarisie­ rende obere Isolationsschicht 5, vorzugsweise ebenfalls eine SiO2-Schicht, abgelagert. Bei diesem Prozeß, der unter Betei­ ligung von Wasserstoff erfolgen kann, ist der Kondensator 3 bereits durch die zweite nitridisierte Oxidschicht 7B ge­ schützt.The planarizing upper insulation layer 5 , preferably also an SiO 2 layer, is then deposited over the structure described. Can take place in this process, the pation under BETEI of hydrogen, the capacitor 3 is already protected by the second nitrided oxide layer 7 B ge.

Danach werden die beiden Kontaktlöcher 46 und 52 geätzt. Auf­ grund der durch die Maskierungen 6, 9.1 und 9.2 erzeugten Strukturierungen der nitridisierten Oxidschichten 7A und 7B können beide Kontaktlöcher 46 und 52 durch eine übliche Oxid- Ätzung gebildet werden. Eine Ätzung unterschiedlicher Schichtmaterialien ist nicht erforderlich. Folglich weisen die Kontaktlöcher 46 und 52 ausgesprochen maßhaltige und ebene Innenwandflächen auf, wodurch eine laterale Strukturver­ kleinerung begünstigt wird. Die Kontaktlöcher 46, 52 können gemeinsam in einem einzelnen Ätzschritt oder auch in zwei einzelnen Ätzschritten gebildet werden.The two contact holes 46 and 52 are then etched. On the basis of the structuring of the nitridized oxide layers 7 A and 7 B generated by the maskings 6 , 9.1 and 9.2 , both contact holes 46 and 52 can be formed by conventional oxide etching. It is not necessary to etch different layer materials. Consequently, the contact holes 46 and 52 have extremely dimensionally stable and flat inner wall surfaces, which favors a lateral structural reduction. The contact holes 46 , 52 can be formed together in a single etching step or in two individual etching steps.

Gemäß Fig. 2D kann nun ein dritter Plasma-Nitridisierungs­ schritt durchgeführt werden. Dabei werden oberflächennahe In­ nenwandflächenbereiche 7C der beiden Kontaktlöcher 46 und 52 sowie ein Oberflächbereich der oberen Isolationsschicht 5 nitridi­ siert.According to Fig. 2D can now a third plasma Nitridisierungs step are performed. In this case, surface near inner wall surface areas 7 C of the two contact holes 46 and 52 and a surface area of the upper insulation layer 5 are nitrided.

Die Kontaktlöcher 46 und 52 werden sodann in der bereits be­ schriebenen Weise mit einem geeigneten leitfähigen Material, beispielsweise W, gefüllt. Danach kann ein nicht dargestell­ ter Weise ein CMP-Schritt zur Schaffung einer planaren Ober­ fläche durchgeführt werden.The contact holes 46 and 52 are then filled with a suitable conductive material, for example W, in the manner already described. Thereafter, a CMP step to create a planar surface can be performed in a manner not shown.

Zuletzt wird durch Erzeugung der leitfähigen Querverbindung 8 über den beiden Kontaktlöchern 46 und 52 eine elektrische Verbindung zwischen dem Source-Gebiet 21 und der oberen Kon­ densatorelektrode 33 hergestellt, siehe Fig. 2E.Finally, an electrical connection is made between the source region 21 and the upper capacitor electrode 33 by producing the conductive cross connection 8 over the two contact holes 46 and 52 , see FIG. 2E.

Im folgenden werden zwei Möglichkeiten zum Nitridisieren der verschiedenen Oxidschichten im Stickstoff-Plasma beschrieben. Beide Verfahren sind im Zusammenhang mit der n- bzw. p-Dotie­ rung von Silizium mit geeigneten Dotierstoffen bekannt.The following are two ways to nitridize the different oxide layers in nitrogen plasma. Both methods are related to the n- or p-dotie tion of silicon with suitable dopants known.

Das PIII-Verfahren wird üblicherweise in einer aus zwei Kam­ mern bestehenden Anlage durchgeführt. In der einen Kammer wird ein ständig brennendes Stickstoff-Plasma einer hohen Plasmadichte erzeugt. Zur Kontrolle der Plasmadichte kann ein magnetisches Feld eingesetzt werden. The PIII procedure is usually carried out in one out of two existing system. In one chamber becomes a constantly burning nitrogen plasma of a high Generates plasma density. To check the plasma density, a magnetic field can be used.  

Das Substrat mit den zu nitridisierenden Oxidschichten befin­ det sich in der anderen Kammer. Die beiden Kammern sind durch eine Lochblende miteinander verbunden. Es wird nun für kurze Zeit eine Spannung an das Substrat angelegt, wodurch Stick­ stoff-Ionen aus dem Plasma extrahiert, durch die Lochblende auf das Substrat 1 zu beschleunigt und in der jeweilig frei­ liegenden Oxidschicht abgebremst werden.The substrate with the oxide layers to be nitrided is located in the other chamber. The two chambers are connected by a pinhole. A voltage is now applied to the substrate for a short time, as a result of which nitrogen ions are extracted from the plasma, accelerated through the pinhole on the substrate 1 and braked in the respective exposed oxide layer.

Durch die Einstellung der Plasma- und Extraktionsbedingungen kann der Anisotropiegrad der Nitridierung in starkem Maße beeinflußt werden. Bei einer hohen Extraktionsspannung tritt anisotrope Ionenimplantation auf. Z. B. durch Erniedrigung der Extraktionsspannung, Erhöhung der Plasmadichte sowie durch eine Änderung der geometrischen Verhältnisse kann erreicht werden, dass die Nitridisierung durch eine ausgedehnte "Plas­ ma-Wolke" bewirkt wird. In diesem Fall ist eine gleichmäßige Nitridisierung der Oxidschichten auch bei unregelmäßigen O­ berflächentopologien erreichbar und es hat sich gezeigt, dass Kontaktlöcher mit einem Öffnungsverhältnis bis etwa 1 : 12 problemlos in voller Länge nitridisiert werden können.By setting the plasma and extraction conditions can the degree of anisotropy of nitridation to a large extent to be influenced. At a high extraction voltage occurs anisotropic ion implantation. For example, by lowering the Extraction voltage, increase in plasma density as well a change in the geometric relationships can be achieved be that the nitridization by an extensive "Plas ma cloud "is effected. In this case, an even Nitridization of the oxide layers even with irregular O surface topologies accessible and it has been shown that Contact holes with an opening ratio up to about 1:12 can be nitrided in full length without problems.

Das PLAD-Verfahren wird üblicherweise in einer einzelnen Plasmakammer durchgeführt. Die Anlage ist ähnlich einer Sput­ ter-Anlage aufgebaut. Zwischen zwei Elektroden wird eine Hochfrequenzspannung angelegt und ein Stickstoff-Plasma ge­ zündet. Das Substrat befindet sich auf derjenigen Elektrode, zu welcher die Stickstoff-Ionen hin beschleunigt werden. Das System arbeitet sinngemäß wie eine umgepolte Sputter-Anlage.The PLAD process is usually done in a single Plasma chamber performed. The plant is similar to a sput ter system built. One is between two electrodes High frequency voltage applied and a nitrogen plasma ge ignites. The substrate is on the electrode towards which the nitrogen ions are accelerated. The System works like a reversed polarity sputter system.

Auch bei dem PLAD-Verfahren kann der Anisotropiegrad der Nitridisierung durch die Anlagengeometrie und die Konfigura­ tion des Stickstoff-Plasmas wunschgemäß eingestellt werden. The degree of anisotropy of the Nitridization through the system geometry and the configuration tion of the nitrogen plasma can be set as desired.  

Mit beiden Verfahren läßt sich eine typische Nitridisierungs­ dosis im Bereich von 1019 bis 1022 Atome/cm2 einstellen. Typi­ sche Nitridisierungsenergien (kinetische Energie der be­ schleunigten Stickstoff-Ionen beim Auftreffen auf die Oxid­ schichten) liegen im Bereich von 1 bis 12 keV. Bei beiden Verfahren ist es ferner möglich, eine gewünschte Dicke des nitridisierten Oxidschichtbereichs durch eine Änderung der Nitridisierungsenergie während des Nitridisierungsschrittes sukzessive aufzubauen. Der Nitridisierungsvorgang beginnt dann bei der höchsten Nitridisierungsenergie und endet bei der geringsten Nitridisierungsenergie. Die Dauer des gesamten Nitridisierungsschrittes beträgt bei einer Nitridisierungsdo­ sis von 1020 Atomen/cm2 typischerweise etwa 60 Sekunden.A typical nitridation dose in the range from 10 19 to 10 22 atoms / cm 2 can be set with both methods. Typical nitridation energies (kinetic energy of the accelerated nitrogen ions when they hit the oxide layers) are in the range of 1 to 12 keV. In both methods, it is also possible to successively build up a desired thickness of the nitrided oxide layer region by changing the nitridization energy during the nitridization step. The nitridation process then begins at the highest nitridation energy and ends at the lowest nitridization energy. The duration of the entire nitriding step is typically about 60 seconds at a nitriding dose of 10 20 atoms / cm 2 .

Claims (10)

1. Verfahren zur Herstellung eines Halbleiterbauelements, bei welchem
über einem Substrat eine erste Isolationsschicht (4) er­ zeugt wird; und
über der ersten Isolationsschicht (4) ein Kondensator ent­ haltend eine untere und eine obere Elektrode (31, 33) und eine dazwischen abgeschiedene metalloxidhaltige Kondensa­ tormaterialschicht (32) gebildet wird;
dadurch gekennzeichnet,
daß über dem Kondensator (3) eine Oxidschicht (7B) erzeugt wird; und
daß die Oxidschicht (7B) unter Verwendung eines Plasma- Dotierverfahrens mit einem eine Wasserstoff-Diffusions­ barriere in der Oxidschicht (7B) aufbauenden Barrierestoff dotiert wird.
1. A method for producing a semiconductor device, in which
a first insulation layer ( 4 ) is created over a substrate; and
Above the first insulation layer ( 4 ), a capacitor containing a lower and an upper electrode ( 31 , 33 ) and a metal oxide-containing capacitor material layer ( 32 ) deposited between them is formed;
characterized by
that an oxide layer ( 7 B) is generated over the capacitor ( 3 ); and
that the oxide layer ( 7 B) is doped using a plasma doping method with a hydrogen diffusion barrier in the oxide layer ( 7 B) building barrier material.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor der Bildung des Kondensators (3) eine Oxidschicht (7A), insbesondere eine Oberflächenschicht der ersten Iso­ lationsschicht (4), unter Verwendung eines Plasma- Dotierverfahrens mit einem eine Wasserstoff- Diffusionsbarriere in der Oxidschicht (7A) aufbauenden Bar­ rierestoff dotiert wird.2. The method according to claim 1, characterized in that before the formation of the capacitor ( 3 ) an oxide layer ( 7 A), in particular a surface layer of the first insulation layer ( 4 ), using a plasma doping process with a hydrogen diffusion barrier in the oxide layer ( 7 A) building barrier substance is doped. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die erste dotierte Oxidschicht (7B) und die zweite do­ tierte Oxidschicht (7A) den Kondensator (3) allseits um­ schließen. 3. The method according to claim 1 or 2, characterized in that the first doped oxide layer ( 7 B) and the second do oxide layer ( 7 A) close the capacitor ( 3 ) on all sides. 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Barrierestoff um Stickstoff handelt.4. The method according to any one of the preceding claims, characterized, that the barrier material is nitrogen. 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass vor der Plasma-Dotierung auf der ersten (4) und/oder zweiten Oxidschicht eine Maske (6; 9.1, 9.2) aufgebracht wird, mittels welcher die Dotierung der Oxidschicht struk­ turiert wird; und
dass nachfolgend ein Oxid-Ätzschritt durchgeführt wird.
5. The method according to any one of the preceding claims, characterized in
that a mask ( 6 ; 9.1 , 9.2 ) is applied to the first ( 4 ) and / or second oxide layer before the plasma doping, by means of which the doping of the oxide layer is structured; and
that an oxide etching step is subsequently carried out.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass nach dem Oxid-Ätzschritt, mittels welchem ein Kontakt­ loch (45, 46, 51, 52) erzeugt wird, die geschaffene Struk­ tur ein weiteres Mal unter Verwendung des Plasma-Dotier­ verfahrens mit dem Barrierestoff zur Dotierung der Kontakt­ lochwände dotiert wird.6. The method according to claim 5, characterized in that after the oxide etching step, by means of which a contact hole ( 45 , 46 , 51 , 52 ) is generated, the structure created a further time using the plasma doping method with the Barrier material for doping the contact hole walls is doped. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierung mittels eines PIII-Verfahrens durchge­ führt wird.7. The method according to any one of the preceding claims, characterized, that the doping is carried out by means of a PIII method leads. 8. Verfahren nach einem der der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierung mittels eines PLAD-Verfahrens durchge­ führt wird.8. The method according to any one of the preceding claims, characterized,  that the doping is carried out using a PLAD method leads. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Barrierestoff-Dosis bei der Plasma-Dotierung der ersten (4) und/oder der zweiten Oxidschicht im Bereich von 1019 bis 1022 Atome/cm2 liegt.9. The method according to any one of the preceding claims, characterized in that the barrier substance dose in the plasma doping of the first ( 4 ) and / or the second oxide layer is in the range from 10 19 to 10 22 atoms / cm 2 . 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Plasma-Dotierung eine Barrierestoff-Implanta­ tionsenergie im Bereich von 1 bis 12 keV eingesetzt wird.10. The method according to any one of the preceding claims, characterized, that in plasma doping a barrier substance implant tion energy in the range of 1 to 12 keV is used.
DE10010284A 2000-02-25 2000-02-25 Method for producing a semiconductor component with a capacitor Expired - Fee Related DE10010284C2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10010284A DE10010284C2 (en) 2000-02-25 2000-02-25 Method for producing a semiconductor component with a capacitor
DE10065976A DE10065976A1 (en) 2000-02-25 2000-02-25 Method of manufacturing a semiconductor device
TW090102893A TW502399B (en) 2000-02-25 2001-02-09 Method to produce a semiconductor-element
EP01104254A EP1128428B1 (en) 2000-02-25 2001-02-22 Method of manufacturing a semiconductor device
DE50113179T DE50113179D1 (en) 2000-02-25 2001-02-22 Method for producing a semiconductor component
CNB011049421A CN1174472C (en) 2000-02-25 2001-02-23 Method for producing semiconductor device
JP2001049279A JP3990542B2 (en) 2000-02-25 2001-02-23 Semiconductor device manufacturing method
KR10-2001-0009483A KR100397881B1 (en) 2000-02-25 2001-02-24 Process for producing a semiconductor component
US09/793,351 US6316275B2 (en) 2000-02-25 2001-02-26 Method for fabricating a semiconductor component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010284A DE10010284C2 (en) 2000-02-25 2000-02-25 Method for producing a semiconductor component with a capacitor
DE10065976A DE10065976A1 (en) 2000-02-25 2000-02-25 Method of manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
DE10010284A1 DE10010284A1 (en) 2001-10-04
DE10010284C2 true DE10010284C2 (en) 2002-03-14

Family

ID=34809097

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10010284A Expired - Fee Related DE10010284C2 (en) 2000-02-25 2000-02-25 Method for producing a semiconductor component with a capacitor

Country Status (1)

Country Link
DE (1) DE10010284C2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219498A (en) * 1989-02-16 1990-09-03 Toyota Central Res & Dev Lab Inc Current controller of inverter
EP0847079A2 (en) * 1996-12-05 1998-06-10 Texas Instruments Incorporated Method of manufacturing an MIS electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219498A (en) * 1989-02-16 1990-09-03 Toyota Central Res & Dev Lab Inc Current controller of inverter
EP0847079A2 (en) * 1996-12-05 1998-06-10 Texas Instruments Incorporated Method of manufacturing an MIS electrode

Also Published As

Publication number Publication date
DE10010284A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
EP1128428B1 (en) Method of manufacturing a semiconductor device
DE3916228C2 (en) Semiconductor memory device with stacked capacitor cell structure and method for its production
DE4314360C2 (en) Semiconductor device with a plurality of contact holes of different depths and method for producing the same
DE19829300B4 (en) A ferroelectric memory device with electrical connection between a lower capacitor electrode and a contact plug and method for their preparation
DE19825736C2 (en) Method of forming a capacitor of a semiconductor device
DE10000005C1 (en) Method for producing a ferroelectric semiconductor memory
EP0931355B1 (en) Semiconductor device with a protected barrier for a stack cell
DE10163345B4 (en) Method for producing a capacitor in a semiconductor device
DE10014315B4 (en) Method for producing a semiconductor memory
DE19838741A1 (en) A metal-insulator-metal capacitor for a dynamic random access memory (DRAM) device
DE10146013A1 (en) Semiconductor device and method for its manufacture
DE10219123B4 (en) Process for structuring ceramic layers on semiconductor substances with uneven topography
DE10228528B4 (en) Diffusion barrier film and its manufacturing method, semiconductor memory and its manufacturing method
DE19712540C1 (en) Manufacturing method for a capacitor electrode made of a platinum metal
DE10158706B4 (en) Semiconductor device and method for its production
DE19963500C2 (en) Method for producing a structured layer containing metal oxide, in particular a ferroelectric or paraelectric layer
DE10053171C2 (en) Method for producing a ferroelectric or paraelectric metal oxide-containing layer and a memory component therefrom
EP1202333B1 (en) Storage capacitor, contact structure and method of manufacturing
DE69918219T2 (en) Method for improving the plug conductivity
DE10125370C1 (en) Integrated semiconductor circuit manufacturing method has dielectric or ferroelectric layer for integrated capacitors separately heated before reducing into small particles applied semiconductor circuit substrate
DE10010284C2 (en) Method for producing a semiconductor component with a capacitor
DE10008617A1 (en) Process for producing a ferroelectric layer
EP1202332B1 (en) Contact structure for a ferroelectric capacitor and method of manufacturing
DE19640448C1 (en) Stacked cell capacitor-containing integrated circuit production
DE10066082A1 (en) Targeted local creation of opening in a layer

Legal Events

Date Code Title Description
AH Division in

Ref country code: DE

Ref document number: 10065976

Format of ref document f/p: P

OP8 Request for examination as to paragraph 44 patent law
AH Division in

Ref country code: DE

Ref document number: 10065976

Format of ref document f/p: P

AH Division in

Ref country code: DE

Ref document number: 10065976

Format of ref document f/p: P

D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee