CN1726595A - 致密双平面器件 - Google Patents

致密双平面器件 Download PDF

Info

Publication number
CN1726595A
CN1726595A CNA2003801062984A CN200380106298A CN1726595A CN 1726595 A CN1726595 A CN 1726595A CN A2003801062984 A CNA2003801062984 A CN A2003801062984A CN 200380106298 A CN200380106298 A CN 200380106298A CN 1726595 A CN1726595 A CN 1726595A
Authority
CN
China
Prior art keywords
semiconductor body
independent
independent semiconductor
channel region
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801062984A
Other languages
English (en)
Other versions
CN100505303C (zh
Inventor
E·J·诺瓦克
B·雷尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1726595A publication Critical patent/CN1726595A/zh
Application granted granted Critical
Publication of CN100505303C publication Critical patent/CN100505303C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

一种MOS器件,具有形成在衬底(10)上的第一和第二独立半导体管体(40N、40P)。第一独立半导体管体(40N或40P)具有相对于第二独立半导体管体(40P或40N)的第一部分呈非直角、非平行取向的第一部分。所述第一和第二独立半导体管体(40N、40P)的这些部分具有各自的第一和第二结晶取向。第一栅电极(60)以非直角的角度经过所述第一独立半导体管体(40N或40P)的所述第一部分的至少一部分,第二栅电极(60)同样经过第二独立半导体管体(40P或40N)的第一部分。

Description

致密双平面器件
相关申请的交叉引用
参考共同待审并受让于本发明的受让人的于2001年12月4日提交的题目为“Multiple-Plane FinFET CMOS”的美国专利申请10/011,846和于2002年4月12日提交的题目为“Fin Memory Cell and Method ofFabrication”的10/063,330。
技术领域
本发明通常涉及CMOS技术和超大规模集成电路,更具体地说,涉及能够在双栅极CMOS技术中使用高迁移率结晶平面的方法和结构。
背景技术
互补金属氧化物半导体(CMOS)已经成为超大规模集成电路(VLSI)的选择技术,其中可以制造差不多好几千万个(或更多)晶体管以形成单个集成电路。
为了提供更大数量的具有更高速度的晶体管,现有技术中已经提议出的一种选择是利用独立硅轨(silicon rail)作为晶体管的管体(body)。这些管体或所谓的“鳍片(fin)”垂直于晶片表面所限定的平面。参见例如Muller等人的美国专利6,252,284。
由这种鳍片构造的双栅极晶体管可以提供较低的漏电流并能够按比例缩小到更小的栅极长度。参见2001 IEEE International Solid State CircuitsConference,Page 7.4中的Tang等人的“FinFET-Aquasi-PlanrDouble-Gate MOSFET”。
还知道,在如硅的半导体晶体中,空穴和电子的迁移率是其中形成晶体管沟道的结晶平面的函数。例如在硅中,电子在{100}等效平面中具有它们最大的迁移率,而空穴在{110}等效平面中具有它们最大的迁移率,如在1994 IEEE Trans.on Electron Device,V.41,No.12,Dec.1994,pp.2357-2368中的Takagi等人的“On the Universality of Inversion Layer Mobility in SiMOSFETs:Part I-Effects of Substrate Impurity Concentration”中所讨论的那样。其它类型的半导体衬底(例如砷化镓)一般在不同的平面中具有不同的电子/空穴迁移率。
实际上,已经证明很难在不同的平面上形成NFET和PFET而不降低器件密度和/或增加工艺复杂性。
例如,在美国专利4,933,298中,SOI衬底上的硅岛选择地被掩蔽并被再结晶以形成不同结晶取向的岛,这增加了工艺成本。在美国专利5,317,175中,牺牲密度来将n和p型器件相互垂直地分别设置在衬底的分离区中。在美国专利5,698,893以及日本公开专利申请JP126454A和JP3285351A中,在衬底的水平和垂直表面上形成各自的器件;沟槽形成增加了工艺复杂性和成本。
因此,本发明显著的优点是以添加最小的工艺复杂性和密度损失的方式,提供具有p型和n型晶体管的独立半导体管体,所述晶体管在不同的沟道平面中具有沟道。
发明内容
在第一个方案中,本发明包括一个MOS器件,该MOS器件包括:在衬底上形成的第一与第二独立半导体管体,所述第一独立半导体管体具有相对于所述第二独立半导体管体的第一部分呈非直角、非平行取向设置的第一部分,所述第一和第二独立半导体管体的所述部分具有各自的第一和第二结晶取向;第一栅电极,以相对于所述第一独立半导体管体的所述第一部分呈非直角的角度经过所述第一独立半导体管体的所述第一部分的至少一部分;第二栅电极,以相对于所述第二独立半导体管体的所述第一部分呈非直角的角度经过所述第二独立半导体管体的所述第一部分的至少一部分;以及受控电极,至少设置在分别通过所述第一栅电极和所述第二栅电极暴露的所述第一和第二独立半导体管体的各部分中。
在第二个方案中,本发明包括一个CMOS器件,该CMOS器件包括:第一独立半导体管体,具有设置在第一结晶平面上的n型沟道区,以及以相对于所述沟道区呈非直角角度经过所述沟道区的第一栅电极,所述第一结晶平面的电子迁移率大于所述第一独立半导体管体的第二结晶平面的电子迁移率;以及第二独立半导体管体,具有设置在第二结晶平面上的p型沟道区,以及以相对于所述沟道区呈非直角角度经过所述沟道区的第二栅电极,所述第二结晶平面的空穴迁移率大于所述第一独立半导体管体的所述第一结晶平面的空穴迁移率。
在第三个方案中,本发明包括一种形成MOS器件的方法,该方法包括:形成第一独立半导体管体,其具有设置在第一结晶平面上的n型沟道区,以相对于所述沟道区呈非直角角度经过所述沟道区的第一栅电极,以及源极和漏极区,所述第一结晶平面的电子迁移率大于所述第一独立半导体管体的第二结晶平面的电子迁移率;以及形成第二独立硅管体,其具有设置在第二结晶平面上的p型沟道区,以相对于所述沟道区呈非直角角度经过所述沟道区的第二栅电极,以及源极和漏极区,所述第二结晶平面的空穴迁移率大于所述第一独立半导体管体的所述第一结晶平面的空穴迁移率。
在第四方案中,本发明包括一种提供包括第一和第二FinFET的致密集成电路的方法,该第一和第二FinFET具有设置在第一和第二结晶平面上的沟道区,该方法包括:在给定轴上取向半导体晶片;形成相对于所述给定轴呈第一方位角的第一掩模形状组;形成相对于所述给定轴呈第二方位角的第二掩模形状组;通过蚀刻由所述第一和第二掩模形状组暴露的所述晶片的部分,在所述半导体晶片中形成FinFET管体;以及在所述FinFET管体上以有利于光刻控制的取向形成栅电极。
附图说明
通过参考下述附图,结合附随的说明,将更好地理解本发明,并且对于本领域的技术人员其许多目的和优点将变得显而易见,其中:
图1是SOI晶片在根据本发明第一实施例的工艺某一点的截面图;
图2是SOI晶片在根据本发明第一实施例的工艺中间步骤的顶视图;
图3A和3B分别是SOI晶片在根据本发明第一实施例的图2之后的工艺中间步骤的顶视图和截面图;
图4A和4B分别是SOI晶片在根据本发明第一实施例的图3A和3B之后的工艺中间步骤的顶视图和截面图;
图5是根据本发明第一实施例的具有集成电路的SOI晶片的顶视图;
图6是根据本发明第一实施例的倒相电路的布局;
图7示出了根据本发明第二实施例的物理布局和结构;以及
图8是本发明的独立FET器件的顶视图,示出了其电子沟道长度的控制。
具体实施方式
一般而言,本发明是用于提供具有第一取向的p型沟道和第二取向的n型沟道的晶体管的致密封装的方法和结构,所有其它设计特征彼此正交(即垂直)。{100}面的硅晶片以相对于垂直参考轴呈22.5度的{100}平面取向,该垂直参考轴沿着晶片上表面的平面放置,这产生了具有与垂直参考轴的相反方向呈22.5度的取向的{110}平面。独立硅管体根据其是否用于构建n型或p型FET沿着这些各自的平面形成。沿着与晶片的垂直参考轴正交(即相对于其呈90度取向)的方向构图栅电极层,栅极长度由覆盖独立硅管体的栅电极的宽度来限定。
本发明可以制造在体硅晶片或绝缘体上硅(SOI)晶片上。通常,虽然相对于体硅晶片,优选SOI,由于其如下所述制造独立硅管体的容易性,但是也可以使用体硅晶片。此外,虽然相对于硅管体来讨论本发明,但是能够使用其它半导体管体(诸如常规的单晶锗、硅和锗的化合物(例如诸如SiGe和SiGeC的应变硅材料)、诸如GaAs和InAs的III-V族材料、或II-VI族材料)。
在本发明中,形成独立硅轨,以提供用于双栅极FET(即,具有多维而不仅仅是如常规FET中的上下控制沟道区的栅电极的FET)的硅管体。实际上,可以使用形成具有或不具有双栅极构造的这种独立硅管体的任何工艺。即,虽然本发明的优选实施例使用FinFET,由于它们构建的相对容易性以及它们最终的双栅极构造,但是可以使用其它用于在独立半导体管体上形成FET(或其它有源或无源集成电路部件)的方法、结构和构造。
在下面的描述中,将涉及用于本发明器件的各种结构的具体厚度、尺寸以及其它参数,它们基于当前的半导体制造技术以及未来所预见的。应该理解,随着将来工艺集成的进步,能够利用不同/更先进的参数形成所述结构。不应该认为本发明的范围受限于下述参数。
根据本发明的优选实施例,通过下述工艺来形成FinFET硅管体。首先,提供具有给定结晶取向的SOI衬底10。SOI晶片在掩埋氧化层的顶部上具有近似10-120nm厚度的硅层。该硅层由4-50nm厚的(利用常规技术在硅层上热生长的)氧化硅层12和在该氧化硅层12上的6-75nm厚的未掺杂多晶硅层(或适合于下述工艺的其它材料)覆盖。然后,在多晶硅上形成光掩模,并利用常规技术蚀刻该多晶硅层,在氧化硅层12上停止。然后如图1所示,利用常规工艺在蚀刻的多晶硅(心轴)20N和20P的侧面上形成氮化硅侧壁隔离层30。该隔离层在它们的最宽处(即氧化硅12的正上方)近似4-50nm厚。值得注意的是,优选,多晶硅层的厚度近似于氮化硅隔离层的厚度的1.5倍;还值得注意的是,优选,氮化硅隔离层具有与氧化硅12相同的总厚度。然而值得注意的是,这样的相互关系不是必需的。
如图2所示,值得注意的是,从顶视图上看,心轴20在作为最终形成的器件的函数的不同角度上取向。心轴20N如此取向,以至于FET的最终沟道区将沿着SOI晶片10上的硅层的{100}平面,并用于形成n型FinFET。心轴20P如此取向,以至于FET的最终沟道区将沿着SOI晶片10上的硅层的{110}平面,并用于形成p型FinFET。因为在硅中,{100}和{110}平面相互呈45度取向,所以心轴20N和20P也相互呈45度取向。如前所述,不同的半导体具有在其处空穴和电子迁移率最大的不同平面。因此,实际上,对于其它半导体,心轴20N和20P可以相互以除45度之外的角度设置。它们将以分别与最大化空穴和电子迁移率的各自结晶取向对准的任何角度设置。同样,虽然仅示出两个FinFET管体,实际上,可以在衬底上以与管体20N和20P的其中之一相同的取向或与其垂直的取向形成其它管体。
作为优选实施例使用硅来制造,值得注意的是,SOI晶片10具有槽口10A。该槽口通常用于限定晶片在处理期间的水平和垂直参考轴。因此,例如,当将晶片插入光刻工具中时,该槽口用于限定晶片的垂直参考轴,并使用该轴作为参考点来印刷图像。通常在CMOS工艺中将槽口与晶片的{110}结晶取向对准。在本发明中,取而代之地,在布置离{100}平面22.5度的位置处制作槽口。
因此,鳍片通常取向为离由晶片上的槽口限定的四个基本方向+/-22.5度。这将根据它们分别离垂直参考轴是顺时针方向22.5度还是逆时针方向22.5度来产生具有位于{110}或{100}平面中的平面的硅“鳍片”。
返回到工艺描述,在除去多晶硅心轴20N、20P之后,使用氮化硅侧壁30作为掩模,蚀刻二氧化硅层12和下面的硅层以形成鳍片管体。值得注意的是,氮化物隔离层30和下面的氧化硅12的结合共同地提供硬掩模,该硬掩模为了硅层的全蚀刻将保持其尺寸的完整性。然后,除去氮化硅侧壁隔离层30,产生FinFET硅管体40N、40P,各自在其上表面上具有氧化硅层12的余量。最终的结构在图3A(顶视图)和图3B(截面图)中示出。值得注意的是,由于管体40N、40P通过形成在心轴上的侧壁隔离层来限定,所以它们为环形。在这个环节可以使用各种掩模/蚀刻顺序来蚀刻掉环的连接部分,以形成分离的FinFET管体。为了本发明的目的,这些环的存在或不存在不重要。
然后根据产品的应用对FinFET管体40N、40P掺杂。假设硅层最初为p掺杂,则FinFET管体40N将在该环节被掩蔽,并将n型掺杂剂施加到FinFET管体40P。如图4A和4B所示,在适合的管体掺杂后,在FinFET管体中形成适合的氧化硅栅极介质50(通常为1-2.5nm厚,由热氧化形成)。可以使用其它栅极介质(氧化硅和氮化硅层、或氧氮化硅、或最近提出的诸如氧化铪、氧化铝、氧化锆和金属硅酸盐的高k栅氧化物介质中的任何一种)。然后,将栅电极材料,通常为多晶硅,沉积至50-150nm的厚度,然后蚀刻以形成具有7-180nm的给定栅极长度(在该取向中,在图4A的垂直平面中栅极60的宽度)的栅极60。栅极长度是确定FET特别是FinFET的速度和适当功能的重要参数。该栅极沿着参考轴取向,因此,栅极长度的控制不受FinFET管体的离轴取向影响。而且,值得注意的是,与有利于光刻控制的参考轴对准来执行这个和所有随后的掩模和蚀刻步骤。
在图5中,将源极和漏极的延伸和晕圈离子注入FinFET 40N中,掩模层70仅在其中设计nFET的区域上打开。随后对于pFET执行相同的工序而没有示出。值得注意的是,按照相对于晶片的水平参考轴呈近似150度(注入71)、30度(注入72)、210度(注入74)和330度(注入73)的取向的注入顺序来执行各延伸和晕圈注入,以便于完全掺杂FinFET管体40N的两侧。对于n型器件,延伸注入为以1E15(即,1×10的15次幂的离子/平方厘米)数量级的剂量和近似0.5-15kEV的能量的砷,而晕圈注入为以4E13数量级的剂量和近似0.4-10kEV的能量的硼(B11)。对于p型器件,延伸注入为以1E15数量级的剂量和近似.05-15kEV的能量的BF2,而晕圈注入为以5E13至1E14数量级的剂量和近似1-40kEV的能量的磷。应该理解,所有这些值为近似值并取决于技术和产品。
然后,在源极和漏极区75的顺序注入之后,利用常规平坦化的后段制程(BEOL)钝化层(例如硼磷硅酸盐玻璃、氟硅酸盐玻璃、以及诸如商标为SiLK和Black Diamond的那些可购买到的低k介质)和导体80(掺杂硅、铝、难熔金属和难熔金属合金、铜和铜基合金),来互连FinFET。这些结构可以为单或双镶嵌(其中通过限定在其中沉积金属并随后被平坦化的通孔或凹槽来形成互连栓和金属线),或产生与FinFET管体密度一致的互连密度的任何其它BEOL集成方案。
利用上述工艺,可以形成具有如图6所示结构的倒相电路。值得注意的是,栅电极60连接于接触栅电极台垫(landing pad)100A的覆层金属栓100B。本发明的工艺和结构的特征在于:本发明最大化了n型和p型器件的载流子迁移率,同时在除心轴限定掩模之外的所有设计层面上提供正交形状。通过使用边缘限定光刻(在该实施例中,通过利用侧壁隔离层作为掩模的侧壁图像转移(SIT))来在非正交方向上保持鳍片的临界图像控制。值得注意的是,在本发明中,最大化了载流子迁移率,而没有引入额外的掩模步骤或其它工艺复杂性。同时,虽然由于引入非正交特征而一定程度地损失了密度,但是密度减小小于通过现有技术的方法所提供的密度减小,因为其仅应用于单个掩模(限定独立管体的掩模)层面,并通过n型和p型器件所增加的载流子迁移率和独立FET管体的使用的结合来补偿。
在图7中,示出了本发明的第二实施例。在该实施例中,详细布局与在先实施例的不同之处在于:除了在其中栅电极和FET管体交叉的临近附近之外,独立FET管体40N、40P在与晶片的基本参考轴正交的方向上。这种“急转弯”布局结构提供了折衷,它在由第一实施例提供的FET密度上增加了密度,但是对于限定多晶硅心轴的掩模步骤引入了工艺复杂性。例如,该形状可以通过在氮化硅心轴上执行两次彼此呈急转弯角度偏移的顺序掩模/蚀刻步骤来形成。
图8示出了在根据本发明制造的独立FET的有效沟道长度与常规限定的FinFET的有效沟道长度之间的关系。栅极-层面光刻通常限制最小图像,通过该最小图像来确定FET的栅极长度。由于本发明的FinFET硅90的鳍片呈67.5度经过栅极,取代了通常的90度,所以由栅极覆盖的沟道平面的最小物理长度将为常规FET的正割(22.5度)倍,或9%更大。源极和漏极区的扩散通常在栅极边缘近似10%(即,栅极总长度的,其覆盖例如源极区的近似10%)下方延伸;因此,为了在图8的FinFET中获得可比较值的LEFF,必须修改工艺以增加在栅极近似15%下方的源极和漏极扩散的距离。实际上,利用本领域公知的各种技术(例如,在常规参数的基础上延长注入时间或提高注入温度),本发明的源极和漏极延伸可以进一步在栅电极93的边缘之下扩散。因此,确定本发明的FinFET的电子性能的电有效沟道长度LEFF可以保持与常规的FinFET的相等。
很明显,在不脱离如下述权利要求所限定的本发明的精神和范围下,这里可以做出各种改变和/或修改。例如,虽然已经参考最大化n型和p型器件的迁移率描述了本发明,但是,可以存在其期望最大化一种器件的载流子迁移率而不最大化另一种器件的载流子迁移率的产品应用(诸如SRAM单元)。而且,如前所述,本发明应用于诸如电容器或电阻器的其它器件的制造,其中独立管体限定了半导体载流子路径,而“栅极”构成了通路导体或互连导体(取决于将要制造的元件属性)。

Claims (43)

1.一种金属氧化物半导体器件,包括:
在衬底上形成的第一与第二独立半导体管体,所述第一独立半导体管体具有相对于所述第二独立半导体管体的第一部分呈非直角、非平行取向设置的第一部分,所述第一和第二独立半导体管体的所述部分具有各自的第一和第二结晶取向;
第一栅电极,以相对于所述第一独立半导体管体的所述第一部分呈非直角的角度经过所述第一独立半导体管体的所述第一部分的至少一部分;
第二栅电极,以相对于所述第二独立半导体管体的所述第一部分呈非直角的角度经过所述第二独立半导体管体的所述第一部分的至少一部分;以及
受控电极,至少设置在分别通过所述第一栅电极和所述第二栅电极暴露的所述第一和第二独立半导体管体的各部分中。
2.根据权利要求1的器件,其中所述第一和第二独立半导体管体由选自如下的材料构成:硅、锗、硅或锗的化合物、以及III-V族材料和II-IV族材料。
3.根据权利要求2的器件,其中所述第一独立半导体管体以相对于所述第二独立半导体管体呈近似45度的角度取向。
4.根据权利要求3的器件,其中所述第一栅电极以近似67.5度的角度经过所述第一独立半导体管体的所述第一部分。
5.根据权利要求4的器件,其中所述第一独立半导体管体的沟道区与所述第一半导体管体的{100}平面对准,而所述第二独立半导体管体的沟道区与所述第二半导体管体的{110}平面对准。
6.根据权利要求5的器件,其中电子在所述第一独立半导体管体的所述沟道区中为多数载流子,而空穴在所述第二独立半导体管体的所述沟道区中为多数载流子。
7.一种互补金属氧化物半导体器件,包括:
第一独立硅管体,具有设置在第一结晶平面上的n型沟道区,以相对于所述沟道区呈非直角的角度经过所述沟道区的第一栅电极,以及源极和漏极区;以及
第二独立硅管体,具有设置在第二结晶平面上的p型沟道区,以相对于所述沟道区呈非直角的角度经过所述沟道区的第二栅电极,以及源极和漏极区。
8.根据权利要求7的器件,其中所述第一结晶平面为{100}平面,而所述第二结晶平面为{110}平面。
9.根据权利要求8的器件,其中所述第一独立半导体管体的所述源极和漏极区为n型掺杂剂区,而所述第二独立半导体管体的所述源极和漏极区为p型。
10.根据权利要求8的器件,其中所述第一和第二独立硅管体的至少一个具有相对于所述第一和第二栅电极中对应的一个形成直角的至少一个所述源极和漏极区。
11.根据权利要求9的器件,其中所述第一和第二独立硅管体的每一个具有分别相对于所述第一和第二栅电极形成直角的源极和漏极区。
12.根据权利要求8的器件,其中所述第一和第二独立硅管体的至少一个具有急转弯形状。
13.根据权利要求8的器件,其中所述第一结晶平面提供大于硅的至少一个其它结晶平面的电子迁移率,并且其中所述第二结晶平面提供大于所述第一结晶平面的空穴迁移率。
14.一种互补金属氧化物半导体器件,包括:
第一独立半导体管体,具有设置在第一结晶平面上的n型沟道区,以相对于所述沟道区呈非直角角度经过所述沟道区的第一栅电极,以及源极和漏极区,所述第一结晶平面的电子迁移率大于所述第一独立半导体管体的第二结晶平面的电子迁移率;以及
第二独立半导体管体,具有设置在第二结晶平面上的p型沟道区,以相对于所述沟道区呈非直角角度经过所述沟道区的第二栅电极,以及源极和漏极区,所述第二结晶平面的空穴迁移率大于所述第一独立半导体管体的所述第一结晶平面的空穴迁移率。
15.根据权利要求14的器件,其中所述半导体包括硅,所述第一结晶平面为{100}平面,而所述第二结晶平面为{110}平面。
16.根据权利要求15的器件,其中所述第一独立半导体管体的所述源极和漏极区为n型掺杂剂区,而所述第二独立半导体管体的所述源极和漏极区为p型。
17.根据权利要求14的器件,其中所述第一和第二独立硅管体的至少一个具有相对于所述第一和第二栅电极中对应的一个形成直角的至少一个所述源极和漏极区。
18.根据权利要求17的器件,其中所述第一和第二独立硅管体的每一个具有分别相对于所述第一和第二栅电极形成直角的源极和漏极区。
19.根据权利要求14的器件,其中所述第一和第二独立硅管体的至少一个具有急转弯形状。
20.一种形成金属氧化物半导体器件的方法,包括:
在衬底上形成形成第一和第二独立半导体管体,所述第一独立半导体管体具有相对于所述第二独立半导体管体的第一部分呈非直角、非平行取向设置的第一部分,所述第一和第二独立半导体管体的所述部分具有各自的第一和第二结晶取向;
形成第一栅电极,其以相对于所述第一独立半导体管体的所述第一部分呈非直角的角度经过所述第一独立半导体管体的所述第一部分的至少一部分;
形成第二栅电极,其以相对于所述第二独立半导体管体的所述第一部分呈非直角的角度经过所述第二独立半导体管体的所述第一部分的至少一部分;以及
形成受控电极,其在通过所述第一栅电极和所述第二栅电极暴露的所述第一和第二独立半导体管体的部分中。
21.根据权利要求20的方法,其中所述第一和第二独立半导体管体由选自如下的材料构成:硅、锗、硅或锗的化合物、以及III-V族材料和II-IV族材料。
22.根据权利要求20的方法,其中所述第一独立半导体管体以相对于所述第二独立半导体管体呈近似45度的角度取向。
23.根据权利要求22的方法,其中所述第一栅电极以近似67.5度的角度经过所述第一独立半导体管体的所述第一部分。
24.根据权利要求23的方法,其中所述第一独立半导体管体的沟道区与所述第一半导体管体的{100}平面对准,而所述第二独立半导体管体的沟道区与所述第二半导体管体的{110}平面对准。
25.根据权利要求24的方法,其中电子在所述第一独立半导体管体的所述沟道区中为多数载流子,而空穴在所述第二独立半导体管体的所述沟道区中为多数载流子。
26.一种形成互补金属氧化物半导体器件的方法,包括:
形成第一独立半导体管体,其具有设置在第一结晶平面上的n型沟道区,以及以相对于所述沟道区呈非直角角度经过所述沟道区的第一栅电极,所述第一结晶平面的电子迁移率大于所述第一独立半导体管体的第二结晶平面的电子迁移率;以及
形成第二独立硅管体,其具有设置在第二结晶平面上的p型沟道区,以及以相对于所述沟道区呈非直角角度经过所述沟道区的第二栅电极,所述第二结晶平面的空穴迁移率大于所述第一独立半导体管体的所述第一结晶平面的空穴迁移率。
27.根据权利要求26的方法,其中所述第一结晶平面为{100}平面,而所述第二结晶平面为{110}平面。
28.根据权利要求27的方法,其中所述第一独立半导体管体的源极和漏极区为n型掺杂剂区,而所述第二独立半导体管体的源极和漏极区为p型。
29.根据权利要求26的方法,其中所述第一和第二独立硅管体的至少一个具有相对于所述第一和第二栅电极中对应的一个形成直角的至少一个源极和漏极区。
30.根据权利要求29的方法,其中所述第一和第二独立硅管体的每一个具有分别相对于所述第一和第二栅电极形成直角的源极和漏极区。
31.根据权利要求26的方法,其中所述第一和第二独立硅管体的至少一个具有急转弯形状。
32.一种提供包括第一和第二FinFET的致密集成电路的方法,该第一和第二FinFET具有设置在第一和第二结晶平面上的沟道区,该方法包括:
在给定轴上取向半导体晶片;
形成相对于所述给定轴呈第一方位角的第一掩模形状组;
形成相对于所述给定轴呈第二方位角的第二掩模形状组;
通过蚀刻由所述第一和第二掩模形状组暴露的所述晶片的部分,在所述半导体晶片中形成FinFET管体;以及
在所述FinFET管体上以有利于光刻控制的取向形成栅电极。
33.根据权利要求32的方法,其中所述半导体包括选自如下的材料:硅、锗、硅或锗的化合物、以及III-V族材料和II-IV族材料。
34.根据权利要求33的方法,其中所述半导体包括硅。
35.根据权利要求32的方法,其中所述第一方位角处于其中电子迁移率高于第二结晶平面的电子迁移率的所述半导体的第一结晶平面;而所述第二方位角处于其中空穴迁移率高于所述第一结晶平面的空穴迁移率的所述半导体的第二结晶平面。
36.根据权利要求35的方法,其中所述半导体晶片具有从{110}平面以大体45度取向的{100}结晶平面。
37.根据权利要求32的方法,其中所述第一方位角等于并相反于所述第二方位角。
38.根据权利要求37的方法,其中所述第一和第二鳍片的取向自所述半导体晶片轴分别为+22.5度和-22.5度。
39.一种器件,包括:
第一独立半导体管体,其具有布置在第一结晶平面上的第一导电区;
第二独立半导体管体,其具有布置在第二结晶平面上的第二导电区;以及
第一和第二导体,分别相对于所述第一和第二导电区呈非直角、非平行的角度覆盖所述第一和第二导电区。
40.根据权利要求39的器件,其中将掺杂剂区分别设置在所述第一和第二独立半导体管体的至少一个中,所述第一和第二导体中至少对应的一个具有覆盖所述掺杂剂区的其总长度的近似15%。
41.根据权利要求40的器件,其中所述掺杂剂区包括FET的源极扩散,而所述第一和第二导体中所述至少对应的一个包括FET的栅电极。
42.根据权利要求40的器件,其中所述掺杂剂区包括FET的漏极扩散,而所述第一和第二导体中所述至少对应的一个包括FET的栅电极。
43.根据权利要求39的器件,还包括第三独立半导体管体,其相对于所述第一和第二独立半导体管体中的一个呈正交取向设置。
CNB2003801062984A 2002-12-19 2003-12-05 致密双平面器件 Expired - Lifetime CN100505303C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/248,123 US6794718B2 (en) 2002-12-19 2002-12-19 High mobility crystalline planes in double-gate CMOS technology
US10/248,123 2002-12-19

Publications (2)

Publication Number Publication Date
CN1726595A true CN1726595A (zh) 2006-01-25
CN100505303C CN100505303C (zh) 2009-06-24

Family

ID=32592757

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801062984A Expired - Lifetime CN100505303C (zh) 2002-12-19 2003-12-05 致密双平面器件

Country Status (9)

Country Link
US (1) US6794718B2 (zh)
EP (1) EP1573823B1 (zh)
JP (1) JP4947902B2 (zh)
KR (1) KR100734822B1 (zh)
CN (1) CN100505303C (zh)
AU (1) AU2003293380A1 (zh)
IL (1) IL169140A0 (zh)
TW (1) TWI239630B (zh)
WO (1) WO2004061972A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590882C (zh) * 2007-03-06 2010-02-17 国际商业机器公司 半导体器件和同一芯片上集成角形器件与平面器件的方法

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI288443B (en) 2002-05-17 2007-10-11 Semiconductor Energy Lab SiN film, semiconductor device, and the manufacturing method thereof
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6709982B1 (en) 2002-11-26 2004-03-23 Advanced Micro Devices, Inc. Double spacer FinFET formation
US6855606B2 (en) * 2003-02-20 2005-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-rod devices
US6762448B1 (en) * 2003-04-03 2004-07-13 Advanced Micro Devices, Inc. FinFET device with multiple fin structures
US7074656B2 (en) * 2003-04-29 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Doping of semiconductor fin devices
US6909186B2 (en) 2003-05-01 2005-06-21 International Business Machines Corporation High performance FET devices and methods therefor
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US7005330B2 (en) * 2003-06-27 2006-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for forming the gate electrode in a multiple-gate transistor
US6716686B1 (en) 2003-07-08 2004-04-06 Advanced Micro Devices, Inc. Method for forming channels in a finfet device
US7355253B2 (en) * 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates
US20050062088A1 (en) * 2003-09-22 2005-03-24 Texas Instruments Incorporated Multi-gate one-transistor dynamic random access memory
US6970373B2 (en) * 2003-10-02 2005-11-29 Intel Corporation Method and apparatus for improving stability of a 6T CMOS SRAM cell
US7498225B1 (en) 2003-12-04 2009-03-03 Advanced Micro Devices, Inc. Systems and methods for forming multiple fin structures using metal-induced-crystallization
US6924561B1 (en) 2003-12-08 2005-08-02 Advanced Micro Devices, Inc. SRAM formation using shadow implantation
US6924178B2 (en) * 2003-12-08 2005-08-02 International Business Machines Corporation Oxide/nitride stacked in FinFET spacer process
US7105390B2 (en) * 2003-12-30 2006-09-12 Intel Corporation Nonplanar transistors with metal gate electrodes
KR100601911B1 (ko) * 2003-12-30 2006-07-14 동부일렉트로닉스 주식회사 핀 펫 소자 제조 방법
US7268058B2 (en) * 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
KR100585131B1 (ko) 2004-02-20 2006-06-01 삼성전자주식회사 반도체 소자 및 그 제조 방법
EP1566844A3 (en) * 2004-02-20 2006-04-05 Samsung Electronics Co., Ltd. Multi-gate transistor and method for manufacturing the same
US20050189598A1 (en) * 2004-02-27 2005-09-01 Taiwan Semiconductor Manufacturing Co., Ltd. Logic embedded-memory integrated circuits
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US6998684B2 (en) * 2004-03-31 2006-02-14 International Business Machines Corporation High mobility plane CMOS SOI
US7115920B2 (en) * 2004-04-12 2006-10-03 International Business Machines Corporation FinFET transistor and circuit
US7176092B2 (en) * 2004-04-16 2007-02-13 Taiwan Semiconductor Manufacturing Company Gate electrode for a semiconductor fin device
US7208815B2 (en) * 2004-05-28 2007-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS logic gate fabricated on hybrid crystal orientations and method of forming thereof
US7452778B2 (en) * 2004-06-10 2008-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-wire devices and methods of fabrication
US7042009B2 (en) * 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US7354806B2 (en) * 2004-09-17 2008-04-08 International Business Machines Corporation Semiconductor device structure with active regions having different surface directions and methods
US6949796B1 (en) * 2004-09-21 2005-09-27 International Business Machines Corporation Halo implant in semiconductor structures
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) * 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US20060113603A1 (en) * 2004-12-01 2006-06-01 Amberwave Systems Corporation Hybrid semiconductor-on-insulator structures and related methods
US7393733B2 (en) 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US7274084B2 (en) * 2005-01-12 2007-09-25 International Business Machines Corporation Enhanced PFET using shear stress
US7183142B2 (en) * 2005-01-13 2007-02-27 International Business Machines Corporation FinFETs with long gate length at high density
US7193279B2 (en) * 2005-01-18 2007-03-20 Intel Corporation Non-planar MOS structure with a strained channel region
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US7205639B2 (en) * 2005-03-09 2007-04-17 Infineon Technologies Ag Semiconductor devices with rotated substrates and methods of manufacture thereof
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7521993B1 (en) * 2005-05-13 2009-04-21 Sun Microsystems, Inc. Substrate stress signal amplifier
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
WO2006137401A1 (ja) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation ダイヤモンド半導体素子およびその製造方法
US7547637B2 (en) * 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
JP2007035957A (ja) * 2005-07-27 2007-02-08 Toshiba Corp 半導体装置とその製造方法
US7382029B2 (en) * 2005-07-29 2008-06-03 International Business Machines Corporation Method and apparatus for improving integrated circuit device performance using hybrid crystal orientations
KR100655437B1 (ko) * 2005-08-09 2006-12-08 삼성전자주식회사 반도체 웨이퍼 및 그 제조방법
US7230287B2 (en) * 2005-08-10 2007-06-12 International Business Machines Corporation Chevron CMOS trigate structure
US7402875B2 (en) * 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US20070048980A1 (en) * 2005-08-24 2007-03-01 International Business Machines Corporation Method for post-rie passivation of semiconductor surfaces for epitaxial growth
US7462903B1 (en) * 2005-09-14 2008-12-09 Spansion Llc Methods for fabricating semiconductor devices and contacts to semiconductor devices
US7323374B2 (en) * 2005-09-19 2008-01-29 International Business Machines Corporation Dense chevron finFET and method of manufacturing same
US20070063306A1 (en) * 2005-09-22 2007-03-22 Intel Corporation Multiple crystal orientations on the same substrate
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090416A1 (en) * 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7402856B2 (en) * 2005-12-09 2008-07-22 Intel Corporation Non-planar microelectronic device having isolation element to mitigate fringe effects and method to fabricate same
US7439588B2 (en) * 2005-12-13 2008-10-21 Intel Corporation Tri-gate integration with embedded floating body memory cell using a high-K dual metal gate
US7512017B2 (en) * 2005-12-21 2009-03-31 Intel Corporation Integration of planar and tri-gate devices on the same substrate
US7863713B2 (en) * 2005-12-22 2011-01-04 Tohoku University Semiconductor device
US7525160B2 (en) 2005-12-27 2009-04-28 Intel Corporation Multigate device with recessed strain regions
US7396711B2 (en) 2005-12-27 2008-07-08 Intel Corporation Method of fabricating a multi-cornered film
US20070148926A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Dual halo implant for improving short channel effect in three-dimensional tri-gate transistors
US20070152266A1 (en) * 2005-12-29 2007-07-05 Intel Corporation Method and structure for reducing the external resistance of a three-dimensional transistor through use of epitaxial layers
US7414877B2 (en) * 2006-01-23 2008-08-19 Freescale Semiconductor, Inc. Electronic device including a static-random-access memory cell and a process of forming the electronic device
US7777250B2 (en) 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US20070235763A1 (en) * 2006-03-29 2007-10-11 Doyle Brian S Substrate band gap engineered multi-gate pMOS devices
US7425500B2 (en) 2006-03-31 2008-09-16 Intel Corporation Uniform silicide metal on epitaxially grown source and drain regions of three-dimensional transistors
US7449373B2 (en) * 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
US7407847B2 (en) * 2006-03-31 2008-08-05 Intel Corporation Stacked multi-gate transistor design and method of fabrication
US8734583B2 (en) 2006-04-04 2014-05-27 Micron Technology, Inc. Grown nanofin transistors
US7491995B2 (en) 2006-04-04 2009-02-17 Micron Technology, Inc. DRAM with nanofin transistors
US8354311B2 (en) 2006-04-04 2013-01-15 Micron Technology, Inc. Method for forming nanofin transistors
KR20090007393A (ko) * 2006-04-04 2009-01-16 마이크론 테크놀로지, 인크. 나노핀 터널링 트랜지스터
US7670928B2 (en) * 2006-06-14 2010-03-02 Intel Corporation Ultra-thin oxide bonding for S1 to S1 dual orientation bonding
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
JP4487266B2 (ja) * 2006-08-30 2010-06-23 エルピーダメモリ株式会社 半導体装置
WO2008030574A1 (en) 2006-09-07 2008-03-13 Amberwave Systems Corporation Defect reduction using aspect ratio trapping
US7456471B2 (en) * 2006-09-15 2008-11-25 International Business Machines Corporation Field effect transistor with raised source/drain fin straps
US7435683B2 (en) * 2006-09-15 2008-10-14 Intel Corporation Apparatus and method for selectively recessing spacers on multi-gate devices
US7700470B2 (en) 2006-09-22 2010-04-20 Intel Corporation Selective anisotropic wet etching of workfunction metal for semiconductor devices
WO2008039534A2 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Quantum tunneling devices and circuits with lattice- mismatched semiconductor structures
US7799592B2 (en) 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US20080187018A1 (en) 2006-10-19 2008-08-07 Amberwave Systems Corporation Distributed feedback lasers formed via aspect ratio trapping
US7538391B2 (en) * 2007-01-09 2009-05-26 International Business Machines Corporation Curved FINFETs
US7772048B2 (en) * 2007-02-23 2010-08-10 Freescale Semiconductor, Inc. Forming semiconductor fins using a sacrificial fin
US7699996B2 (en) 2007-02-28 2010-04-20 International Business Machines Corporation Sidewall image transfer processes for forming multiple line-widths
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
WO2008124154A2 (en) 2007-04-09 2008-10-16 Amberwave Systems Corporation Photovoltaics on silicon
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8286114B2 (en) * 2007-04-18 2012-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. 3-dimensional device design layout
US8237201B2 (en) * 2007-05-30 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Layout methods of integrated circuits having unit MOS devices
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US20090001470A1 (en) * 2007-06-26 2009-01-01 Anderson Brent A Method for forming acute-angle spacer for non-orthogonal finfet and the resulting structure
JP2009054705A (ja) * 2007-08-24 2009-03-12 Toshiba Corp 半導体基板、半導体装置およびその製造方法
DE112008002387B4 (de) 2007-09-07 2022-04-07 Taiwan Semiconductor Manufacturing Co., Ltd. Struktur einer Mehrfachübergangs-Solarzelle, Verfahren zur Bildung einer photonischenVorrichtung, Photovoltaische Mehrfachübergangs-Zelle und Photovoltaische Mehrfachübergangs-Zellenvorrichtung,
US7847320B2 (en) * 2007-11-14 2010-12-07 International Business Machines Corporation Dense chevron non-planar field effect transistors and method
WO2009082706A1 (en) 2007-12-21 2009-07-02 The Trustees Of Columbia University In The City Of New York Active cmos sensor array for electrochemical biomolecular detection
US7759179B2 (en) * 2008-01-31 2010-07-20 International Business Machines Corporation Multi-gated, high-mobility, density improved devices
JP2009188223A (ja) * 2008-02-07 2009-08-20 Seiko Instruments Inc 半導体装置
US7982269B2 (en) * 2008-04-17 2011-07-19 International Business Machines Corporation Transistors having asymmetric strained source/drain portions
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
FR2935539B1 (fr) * 2008-08-26 2010-12-10 Commissariat Energie Atomique Circuit cmos tridimensionnel sur deux substrats desalignes et procede de realisation
JP5416212B2 (ja) 2008-09-19 2014-02-12 台湾積體電路製造股▲ふん▼有限公司 エピタキシャル層の成長によるデバイス形成
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
JP5478199B2 (ja) * 2008-11-13 2014-04-23 株式会社半導体エネルギー研究所 半導体装置の作製方法
US20100155801A1 (en) * 2008-12-22 2010-06-24 Doyle Brian S Integrated circuit, 1T-1C embedded memory cell containing same, and method of manufacturing 1T-1C memory cell for embedded memory application
US7999298B2 (en) * 2008-12-30 2011-08-16 Intel Corporation Embedded memory cell and method of manufacturing same
US7906802B2 (en) * 2009-01-28 2011-03-15 Infineon Technologies Ag Semiconductor element and a method for producing the same
CN102379046B (zh) 2009-04-02 2015-06-17 台湾积体电路制造股份有限公司 从晶体材料的非极性平面形成的器件及其制作方法
US8053318B2 (en) * 2009-06-25 2011-11-08 International Business Machines Corporation FET with replacement gate structure and method of fabricating the same
CN103843119A (zh) 2011-09-30 2014-06-04 英特尔公司 非平面晶体管鳍状物制造
US8466012B1 (en) * 2012-02-01 2013-06-18 International Business Machines Corporation Bulk FinFET and SOI FinFET hybrid technology
JP2013197342A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 半導体装置および半導体装置の製造方法
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
WO2014062936A1 (en) * 2012-10-17 2014-04-24 The Trustees Of Columbia University In The City Of New York Cmos-integrated jfet for dense low-noise bioelectronic platforms
US8841178B1 (en) 2013-03-13 2014-09-23 International Business Machines Corporation Strained silicon nFET and silicon germanium pFET on same wafer
US8951870B2 (en) 2013-03-14 2015-02-10 International Business Machines Corporation Forming strained and relaxed silicon and silicon germanium fins on the same wafer
US8859355B1 (en) 2013-05-06 2014-10-14 International Business Machines Corporation Method to make dual material finFET on same substrate
US9412664B2 (en) 2013-05-06 2016-08-09 International Business Machines Corporation Dual material finFET on single substrate
US20150187915A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Method for fabricating fin type transistor
US9496399B2 (en) 2015-04-02 2016-11-15 International Business Machines Corporation FinFET devices with multiple channel lengths
US9935106B2 (en) 2016-04-01 2018-04-03 Globalfoundries Inc. Multi-finger devices in mutliple-gate-contacted-pitch, integrated structures
US10672889B2 (en) * 2017-11-30 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
WO2023191808A1 (en) * 2022-04-01 2023-10-05 Intel Corporation Integrated circuit devices with angled transistors

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476991A (en) * 1967-11-08 1969-11-04 Texas Instruments Inc Inversion layer field effect device with azimuthally dependent carrier mobility
US3603848A (en) 1969-02-27 1971-09-07 Tokyo Shibaura Electric Co Complementary field-effect-type semiconductor device
US4768076A (en) 1984-09-14 1988-08-30 Hitachi, Ltd. Recrystallized CMOS with different crystal planes
JPS6170748A (ja) * 1984-09-14 1986-04-11 Hitachi Ltd 半導体装置
JPS6292361A (ja) 1985-10-17 1987-04-27 Toshiba Corp 相補型半導体装置
JPH01162376A (ja) * 1987-12-18 1989-06-26 Fujitsu Ltd 半導体装置の製造方法
JPH01264254A (ja) * 1988-04-15 1989-10-20 Agency Of Ind Science & Technol 積層型半導体装置の製造方法
JPH03285351A (ja) * 1990-04-02 1991-12-16 Oki Electric Ind Co Ltd Cmis型半導体装置およびその製造方法
JP3038939B2 (ja) 1991-02-08 2000-05-08 日産自動車株式会社 半導体装置
JPH0555493A (ja) * 1991-08-26 1993-03-05 Toshiba Corp 半導体集積回路装置
JP3219307B2 (ja) * 1991-08-28 2001-10-15 シャープ株式会社 半導体装置の構造および製造方法
US5293052A (en) 1992-03-23 1994-03-08 Harris Corporation SOT CMOS device having differentially doped body extension for providing improved backside leakage channel stop
JP2568796B2 (ja) * 1992-11-26 1997-01-08 松下電送株式会社 画像通信装置
JP3431198B2 (ja) 1993-02-26 2003-07-28 株式会社東芝 半導体記憶装置およびその製造方法
US5762706A (en) 1993-11-09 1998-06-09 Fujitsu Limited Method of forming compound semiconductor device
US5497019A (en) 1994-09-22 1996-03-05 The Aerospace Corporation Silicon-on-insulator gate-all-around MOSFET devices and fabrication methods
US5698893A (en) 1995-01-03 1997-12-16 Motorola, Inc. Static-random-access memory cell with trench transistor and enhanced stability
JP3472401B2 (ja) 1996-01-17 2003-12-02 三菱電機株式会社 半導体装置の製造方法
US5729045A (en) 1996-04-02 1998-03-17 Advanced Micro Devices, Inc. Field effect transistor with higher mobility
US6190949B1 (en) 1996-05-22 2001-02-20 Sony Corporation Silicon thin film, group of silicon single crystal grains and formation process thereof, and semiconductor device, flash memory cell and fabrication process thereof
KR100200485B1 (ko) * 1996-08-08 1999-06-15 윤종용 모스 트랜지스터 및 그 제조방법
US5808340A (en) 1996-09-18 1998-09-15 Advanced Micro Devices, Inc. Short channel self aligned VMOS field effect transistor
TW319904B (en) 1997-01-20 1997-11-11 United Microelectronics Corp Three dimensional read only memory and manufacturing method thereof
JPH11274485A (ja) 1998-03-25 1999-10-08 Nec Kansai Ltd 絶縁ゲート型半導体装置およびその製造方法
US6121651A (en) 1998-07-30 2000-09-19 International Business Machines Corporation Dram cell with three-sided-gate transfer device
US6261886B1 (en) 1998-08-04 2001-07-17 Texas Instruments Incorporated Increased gate to body coupling and application to DRAM and dynamic circuits
US6164781A (en) * 1998-11-13 2000-12-26 Alliedsignal Inc. High temperature transistor with reduced risk of electromigration and differently shaped electrodes
JP4058751B2 (ja) * 2000-06-20 2008-03-12 日本電気株式会社 電界効果型トランジスタの製造方法
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US6300182B1 (en) * 2000-12-11 2001-10-09 Advanced Micro Devices, Inc. Field effect transistor having dual gates with asymmetrical doping for reduced threshold voltage
US6967351B2 (en) * 2001-12-04 2005-11-22 International Business Machines Corporation Finfet SRAM cell using low mobility plane for cell stability and method for forming
JP4265882B2 (ja) * 2001-12-13 2009-05-20 忠弘 大見 相補型mis装置
JP3782021B2 (ja) * 2002-02-22 2006-06-07 株式会社東芝 半導体装置、半導体装置の製造方法、半導体基板の製造方法
JP3605086B2 (ja) * 2002-03-29 2004-12-22 株式会社東芝 電界効果トランジスタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590882C (zh) * 2007-03-06 2010-02-17 国际商业机器公司 半导体器件和同一芯片上集成角形器件与平面器件的方法

Also Published As

Publication number Publication date
US20040119100A1 (en) 2004-06-24
IL169140A0 (en) 2007-07-04
WO2004061972A1 (en) 2004-07-22
JP4947902B2 (ja) 2012-06-06
AU2003293380A1 (en) 2004-07-29
KR100734822B1 (ko) 2007-07-06
US6794718B2 (en) 2004-09-21
CN100505303C (zh) 2009-06-24
JP2006511962A (ja) 2006-04-06
TWI239630B (en) 2005-09-11
KR20050085052A (ko) 2005-08-29
EP1573823A4 (en) 2009-03-25
EP1573823A1 (en) 2005-09-14
EP1573823B1 (en) 2016-11-16
TW200518310A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
CN100505303C (zh) 致密双平面器件
US10692873B2 (en) Gate formation scheme for nanosheet transistors having different work function metals and different nanosheet width dimensions
CN1292473C (zh) 混合平面和FinFET CMOS器件
US6812103B2 (en) Methods of fabricating a dielectric plug in MOSFETS to suppress short-channel effects
CN100346456C (zh) 一种mosfet半导体及其制造方法
TWI443757B (zh) 製造應變源/汲極結構的方法
CN1282233C (zh) 双栅极场效应晶体管及其制造方法
CN1577850A (zh) 有部分或全包围栅电极的非平面半导体器件及其制造方法
CN1828908A (zh) 半导体结构及制造半导体结构的方法
US10741656B2 (en) Wraparound contact surrounding source/drain regions of integrated circuit structures and method of forming same
CN113140564A (zh) 半导体装置
US11610822B2 (en) Structures for tuning threshold voltage
US6160288A (en) Vertical type misfet having improved pressure resistance
KR20050086701A (ko) 2개의 트랜지스터로 구성된 nor 디바이스
US9761662B1 (en) Active area shapes reducing device size
US20060228862A1 (en) Fet design with long gate and dense pitch
JPS6395669A (ja) 半導体集積回路装置の製造方法
US11563085B2 (en) Transistors with separately-formed source and drain
CN113410231A (zh) 具有分段外延半导体层的晶体管
KR100546286B1 (ko) 에스오아이 트랜지스터의 제조방법
CN113451308A (zh) 源极/漏极区具有外延半导体材料区段的晶体管
US20050116287A1 (en) Power semiconductor component
KR102598765B1 (ko) 반도체 디바이스 및 제조 방법
US11562910B2 (en) Semiconductor structure and method for forming thereof
US20230261076A1 (en) Semiconductor device structure with dielectric dummy gate and method for forming the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MICROSOFT CORP.

Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORP.

Effective date: 20120417

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120417

Address after: Washington State

Patentee after: Microsoft Corp.

Address before: American New York

Patentee before: International Business Machines Corp.

ASS Succession or assignment of patent right

Owner name: MICROSOFT TECHNOLOGY LICENSING LLC

Free format text: FORMER OWNER: MICROSOFT CORP.

Effective date: 20150505

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150505

Address after: Washington State

Patentee after: MICROSOFT TECHNOLOGY LICENSING, LLC

Address before: Washington State

Patentee before: Microsoft Corp.

CX01 Expiry of patent term

Granted publication date: 20090624

CX01 Expiry of patent term