CN1711644A - 具有分离栅极的双栅极半导体装置 - Google Patents

具有分离栅极的双栅极半导体装置 Download PDF

Info

Publication number
CN1711644A
CN1711644A CN200380102759.0A CN200380102759A CN1711644A CN 1711644 A CN1711644 A CN 1711644A CN 200380102759 A CN200380102759 A CN 200380102759A CN 1711644 A CN1711644 A CN 1711644A
Authority
CN
China
Prior art keywords
grid
fin
semiconductor device
insulating barrier
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200380102759.0A
Other languages
English (en)
Other versions
CN100459166C (zh
Inventor
S·S·艾哈迈德
H·王
B·俞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1711644A publication Critical patent/CN1711644A/zh
Application granted granted Critical
Publication of CN100459166C publication Critical patent/CN100459166C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate

Abstract

一半导体装置(100),其包括一基板(110)以及形成于该基板(110)上的一绝缘层(120);一鳍部(210)可形成于该绝缘层上(120),并包括多个侧表面与一上表面;一第一栅极(410)可形成于邻近该鳍部(210)的多个侧表面其中之一的绝缘层(120)上;一第二栅极(420)可形成在绝缘层(120)上,其与第一栅极(410)隔开并且邻近该鳍部(210)的多个侧表面的另一侧表面。

Description

具有分离栅极的双栅极半导体装置
技术领域
本发明涉及半导体装置以及制造该半导体装置的方法,特别是涉及一种适用于双栅极装置者。
背景技术
超大规模集成半导体装置在高密度与高性能的不断需求上,需诸如100纳米以下的栅极长度、高可靠度与提高的制造产量等结构特性。将结构特性降低到100nm以下是对现有技术的挑战。
例如,当公知的平面金属氧化物半导体场效应晶体管(MOSFET)的栅极长度小于100nm时,与短沟道效应有关的问题,譬如源极与漏极之间的过度泄漏,则会变得越来越难克服。此外,迁移率的降低以及许多制程上的问题,同样会难以用包括更小的装置特性来衡量公知的MOSFET。因此,新的装置结构乃应运而生,以改善FET性能并进一步缩小装置。
双栅极MOSFET代表已经被视为取代现有平面MOSFET的新结构。在许多方面中,双栅极MOSFET提供比现有块状硅MOSFET更好的特性,其改良处在于双栅极MOSFET在沟道的两侧上具有一栅极电极,而不是如在现有MOSFET中仅位于一侧上。当具有两个栅极时,漏极所产生的电场会较佳地由该沟道的源极端过滤。同样地,两个栅极能控制的电流约为单一栅极的两倍,而产生更强的切换信号。
鳍式场效应晶体管(FinFET)是目前显现出良好短沟道行为的双栅极结构。虽然现有的FinFET称为″双栅极″MOSFET,但是该两个栅极基本上物理上及电气上连接,从而形成单一逻辑化的可寻址栅极。FinFET包括形成于垂直鳍部中的沟道,FinFET结构可使用类似于公知的制造平面MOSFET的电路布局与制程技术来制造。
发明内容
本发明的实施例提供具有双栅极的FinFET装置,该双栅极通过传导鳍部而彼此有效地隔开,该栅极可独立地偏置以增加电路设计灵活性。
本发明的其余优点与其它特征一部分将陈述于下述说明中,而另一部分对本领域技术人员在阅读下文时即能了解,或者可从实施本发明而知悉。本发明的优点与特征可根据所附的权利要求范围所指出的来予以实现与获得。
根据本发明的一个方面,以上与其它优点能部分地由包括基板与形成于该基板上的绝缘层的一半导体装置所达成。鳍部可形成于该绝缘层上,并可包括多个侧表面与一上表面。一第一栅极形成于邻近该鳍部的多个侧表面的其中一个的绝缘层上。一第二栅极形成在与第一栅极隔开并且邻近该鳍部的多个侧表面中的另外一个的绝缘层上。
根据本发明另一方面,一制造半导体装置的方法包括在一基板上形成一绝缘层,以及在该绝缘层上形成一鳍部结构。该鳍部结构包括第一侧表面、第二侧表面以及一上表面。该方法还包括将源极与漏极区域形成于该鳍部结构的末端,以及将一栅极材料沉积于该鳍部结构上。该栅极材料围绕着该上表面及第一与第二侧表面。该栅极材料可予以蚀刻,以在该鳍部的相对侧上形成第一栅极电极与第二栅极电极。该沉积的栅极材料可邻近该鳍部予以平面化。
根据本发明的又一方面,一半导体装置包括一基板与形成于该基板上的一绝缘层,一传导鳍部形成于该绝缘层上,而栅极介电层则形成于传导鳍部的侧表面上,第一栅极电极形成于绝缘层上,第一栅极电极位于邻近该栅极介电层之一的传导鳍部的第一侧上,第二栅极电极则形成于该绝缘层上,第二栅极电极位于邻近另一栅极介质层的传导鳍部的相对侧边上,并且与第一栅极电极相隔开。
从下述详细说明中,本领域技术人员可清楚了解本发明的其它优点与特征。所显示与用以说明的具体实施例提供要实施本发明的最佳实施方式的说明。本发明能够以各种明显的方式来修改,而不背离本发明。因而,这些附图是用来说明本发明的特性而不是对其进行限定。
附图说明
以附图为参考,其中具有相同标号的组件可表示相同的组件。
图1为根据本发明具体实施例所形成的鳍部的剖视图;
图2A为根据本发明的一具体实施例的鳍部结构的俯视图;
图2B为根据本发明的一具体实施例的图2A所示鳍部结构的剖视图;
图3为根据本发明一具体实施例的图2B所示装置上栅极介电层与栅极材料的形成的示意图;
图4为根据本发明一具体实施例的图3所示栅极材料平面化的剖视图;
图5为根据本发明一具体实施例的图4所示的半导体装置的俯视图;
图6A至6D为根据本发明另一实施例的将应变张力应用导入于一鳍部中的剖视图;以及
图7A至图7F为根据本发明另一具体实施例而将完全硅化栅极形成于FinFET中的俯视图与剖视图。
具体实施方式
本发明以下的详细说明乃参考附图,在不同附图中的相同标号可代表相同或类似的组件。同样地,以下的详细说明并非用以限定本发明。相反地,本发明的保护范围由所附的权利要求范围及其等效所界定。
本发明的实施例提供双栅极FinFET装置与这种装置的制造方法。根据本发明所制成的FinFET装置里的栅极有效地彼此隔开,且可分离地偏置。
图1说明根据本发明一具体实施例而形成的半导体装置100的剖面图。参考图1,半导体装置100包括绝缘体上硅(SOI)的结构,该结构包括一硅基板110、一埋设氧化物层120以及在该埋设氧化物层120上的一硅层130。埋设氧化物层120与硅层130以一公知方式而形成于基板110上。
在一实施例中,埋设氧化物层120包括一硅氧化物,并且具有从大约1000埃至大约3000埃范围的厚度。硅层130包括厚度范围从300埃至1500埃的单晶或多晶硅。如下面进一步详述,该硅层130乃用来形成一双栅极晶体管装置用的一鳍部结构。
本发明的另一实施例中,基板110与硅层130可包括其它的半导材料,譬如锗,或者半导材料的组合,譬如硅锗。埋设氧化物层120也可包括其它的介电材料。
如硅氮化物层或者硅氧化物层(例如,二氧化硅)的介电层140形成于硅层130上,以在接着的蚀刻制程中作为保护罩用。在一实施例中,介电层140的沉积厚度得为约150埃至约600埃。接着,将一光刻胶材料沉积与图案化,以形成一光刻胶掩膜150用于后续制程。该光刻胶以任何公知的方式来沉积与图案化。
半导体装置100随后被蚀刻,再移除该光刻胶掩膜150。在一实施例中,硅层130可用公知的方式来蚀刻,而该蚀刻则终止于埋设氧化物层120上以形成一鳍部。在该鳍部形成后,源极与漏极区域形成于邻近该鳍部的各个端处。例如,在一具体实施例中,一硅、锗、或硅与锗组合层则可用公知的方式予以沉积、图案化与蚀刻,以形成源极与漏极区域。
图2A说明以此方式在半导体100上形成的鳍部结构的俯视图。根据本发明的一具体实施例,源极区域220与漏极区域230系在埋设氧化物层120上邻近鳍部210的端处形成。
图2B为沿图2A的A-A’线所取的剖视图,以说明本发明的具体实施例的鳍部结构。介电层140与硅层130被蚀刻以形成鳍部210,该鳍部210包括硅层130与介电层140。
图3为根据本发明的一具体实施例的栅极介电层与栅极材料形成于鳍部210上的剖视图。一介电层可形成于鳍部210上。例如,如图4所示,一薄氧化膜310可热生长于鳍部210上。氧化膜310可长至约10埃至约50埃的厚度,且形成在鳍部210的硅层130的外露的侧表面上,以作为一用于后续形成的栅极电极的介电层。类似于该氧化膜310,介电层140可为该鳍部210的上表面提供电性绝缘。
在形成氧化膜310后,可在半导体装置100上沉积一栅极材料层320。而该栅极材料层320可包含后续形成的栅极电极所用的材料。在一实施例中,该栅极材料层320包括使用公知化学气相沉积(CVD)而沉积出的多晶硅,其厚度范围约300埃至约1500埃。可替代的,譬如锗或者硅与锗的组合的其它半导体材料,或者不同的金属,也可作为栅极材料。
双栅极通过微影术(例如,光刻法)而定义于栅极材料层320中。栅极材料层320可选择性地蚀刻,以从装置100上的栅极材料层320形成出一栅极结构。如图3所示,以此方式来形成栅极结构,可使部分栅极材料层320者存于介电层140的顶部上。
图4为根据本发明具体实施例的栅极材料320平面化的剖视图。多余的栅极材料可被移除(例如,从介电层140上),以平面化半导体装置100的鳍部区域。例如,可进行化学机械式抛光(CMP),以使该栅极材料(亦即,栅极材料层320)在垂直方向上甚至具有或者几乎甚至具有介电层140。
参考图4,在半导体装置100沟道区域中的栅极材料层320紧靠着鳍部210的两侧表面,以形成一第一栅极410与第二栅极420。然而,鳍部210的上表面被介电层140所覆盖。此结构也示于图5中,其为根据本发明实施例的半导体装置100的顶视图。在图5中,第一栅极410与第二栅极420相邻接但未覆盖鳍部210。
栅极材料层320随后可被图案化与蚀刻,以形成双栅极电极。如图5所示,半导体装置100包括具有栅极电极510与520的双栅极结构。如下详述,栅极电极510与520有效地由鳍部210所隔开,并可分离偏置。为简化起见,围绕鳍部210的侧表面的栅极介电材料310(如图4所示)未示于图5中。
随后可将源极/漏极区域220与230掺杂,例如n型或p型杂质可植入源极/漏极区域220与230中。特定的植入剂量与能量可依据特别的终端装置的需求而选定。本领域技术人员可根据电路需求优化源极/漏极植入制程,这些步骤在此不予揭露,以避免不当地混淆本发明的重点。此外,侧壁隔片(未示出)可在源极/漏极离子植入以前选择性地形成,以依据特定电路需求而来控制源极/漏极接合的位置。随后,进行活化退火,以将源极/漏极区域220与230活化。
如图5所示,栅极电极510与栅极电极520物理上及电气上彼此隔开。根据本发明的一具体实施例,当使用于电路中时,每一栅极电极510与520以不同电压分别地偏置。独立偏置第一栅极410与第二栅极420(经由栅极电极510与520)的能力会增加使用半导体装置100的电路设计的灵活性。
图5中所示的制成的半导体装置100为具有第一栅极410与第二栅极420的双栅极装置。相对于公知的双栅极装置,栅极材料层320(图3与图4)邻接鳍部210的两表面,并为半导体装置100提供每装置增大的沟道宽度。该鳍部210同样可保留在栅极蚀刻中保护鳍部210的介电层140。
第一及第二栅极410与420同样由鳍部210有效地隔开,并根据半导体装置100的特定电路需求而分别地偏置(经由分别的栅极电极510与520)。相对于包括单栅极连接的公知FinFETs,这种隔开的双栅极结构在电路设计的期间内提供提高的灵活性。
因此,根据本发明,双栅极FinFET装置在该装置的沟道区域中形成有两隔开的栅极。有利的是,所制成的结构会呈现出良好的短沟道表现。此外,本发明提供更高的灵活性,并易于与公知的制程集成。
其它实施例
在一些实施例中,需要将张力应变引入到FinFET的鳍部里。图6A至图6D为根据本发明另一具体实施例的将张力应变引入到鳍部里的剖视图。图6A是半导体装置600的剖视图。参照图6A,半导体装置600可包括埋设氧化物层(BOX)610、鳍部620以及二氧化硅罩630。如上述,组件610-630是根据图1至图2B所述而形成。鳍部620包括硅、锗或硅与锗的组合。
如图6B所示,厚去除式氧化物层640可被热生长在鳍部620上。厚(例如,200-400埃)去除式氧化物层640会在鳍部620中导入张力应变。如图6C所示,然后将去除式氧化物层640移除,再生长薄栅极氧化物层650。如图6D所示。栅极材料660随后沉积在鳍部620上。FinFET以典型的方式而由图6D中的结构所形成。在此一FinFET中的鳍部620将具有一张力应变,而会将本领域技术人员所能理解的性质植入鳍部620中。
在其它的实施例中,需要一完全硅化栅极的FinFET。这一FinFET可具有一合并的金属栅极,该金属栅极能移除多晶硅消耗效应并且有助于得到用于FinFET的适当极限电压。图7A与图7B用来形成具有完全硅化栅极的FinFET的示范性制程的图式。参照图7A,装置700包括一鳍部710、源极区域720与漏极区域730。如上述,这些层/结构可根据图1-2B所述而形成。如图7B所示,鳍部710可包括一顶部氧化物罩740以及围绕一硅结构的栅极氧化物750。鳍部710可形成于一埋设氧化(BOX)层705上。
如图7C所示,薄多晶硅层760沉积于鳍部710上。然后,如图7D所示,沉积出一厚底部抗反射(BARC)层770。如图7E顶部所示,该栅极区域与接触部780随后则可被图案化与蚀刻。
在没有移除BARC层770的情形下,源极与漏极区域720与730可植入离子。因此,所使用的掺杂物会被BARC层770所阻挡而无法穿透入沟道内(例如,鳍部710)。
如图7E与图7F所示,BARC层770可被移除,而且多晶硅760能完全地硅化以形成金属栅极780。该栅极材料710也可以类似上述图4所述的方式来平面化。
在先前的说明中,已说明各种特定细节,譬如特定材料、结构、化学物质、制程等等,以提供对本发明完整的理解。总言之,本发明可在不借助在此所述的特定细节下实施。在其它情形中,已知的制程结构说明并未细述,以免不当地混淆本发明的目的。
用以制造本发明的半导体装置的介电质与传导层可通过公知的沉积技术来沉积。例如,可采用金属化技术,譬如不同类型的CVD制程,包括低压CVD(LPCVD)与增强型CVD(ECVD)。
本发明可实施于双栅极半导体装置的制造上,特别是具有100nm以及以下的结构特征的FinFET装置。本发明可应用于任一不同类型半导体装置的形成,因而在此不予赘述,以避免混淆本发明的目的。在实施本发明上,可使用公知的光刻法与蚀刻技术,因此,这些技术的细节在此不另赘述。
本说明书仅将本发明的优选实施例及其部分多用途实例示出并说明。应理解的是,本发明能用于不同的其它组合与环境中,其并能在此所示的发明范畴内进行修改。

Claims (10)

1.一种半导体装置(100),其包括:
一基板(110);
一绝缘层(120),其形成于该基板(110)上;
一鳍部(210),其形成于该绝缘层(120)上,并且包括多个侧表面与一上表面;
一第一栅极(410),其形成于该绝缘层(120)上并邻近于该鳍部(210)的多个侧表面的其中之一;以及
一第二栅极(420),其形成于该绝缘层(120)上并与第一栅极(410)隔开且邻近该鳍部(210)的多个侧表面的另一侧表面。
2.如权利要求1所述的半导体装置(120),其中,该第二栅极(420)形成在相对于第一栅极(410)的鳍部(210)的相反侧上。
3.如权利要求2所述的半导体装置(100),其中,该第一与第二栅极(410,420)分别包括第一与第二栅极触点(510,520)。
4.如权利要求1所述的半导体装置(100),进一步包括:
多个介电层(310),其分别沿该鳍部(210)的多个侧表面而形成,其中该第一与第二栅极(410,420)分别紧邻该多个介电层中的不同介电层(310)。
5.如权利要求1所述的半导体装置(100),进一步包括:
一介电层(140),包含至少一形成于该鳍部(210)上表面上的氮化物与氧化物,其中该介电层(140)的上表面、该第一栅极(410)的上表面、与该第二栅极(420)的上表面在同一平面上。
6.一种制造半导体装置(100)的方法,包括下列步骤:
在一基板(110)上形成一绝缘层(120);
在该绝缘层(120)上形成一鳍部结构(210),该鳍部(210)结构包括一第一侧表面、一第二侧表面以及一上表面;
在该鳍部结构(210)的末端形成源极与漏极区域(220,230);
在该鳍部结构(210)上沉积一栅极材料(320),该栅极材料(310)围绕着该上表面以及第一与第二侧表面;
将该栅极材料(320)蚀刻,以在该鳍部结构(210)的相对侧上形成一第一栅极电极(410)与一第二栅极电极(420);以及
将邻近该鳍部结构的沉积栅极材料(420)平面化。
7.如权利要求6所述的方法,进一步包括下列步骤:
在该鳍部结构(210)的上表面上形成一介电层(140),其中该平面化包括:
将该栅极材料(320)抛光,以使栅极材料不致残留在该介电层(140)上。
8.一种半导体装置(100),包括一基板(110),一形成于该基板(110)上的绝缘层(120),一形成于该绝缘层(120)上的传导鳍部(210),形成于该传导鳍部(210)侧表面上的栅极介质层(310),以及一形成于该绝缘层(120)上的第一栅极电极(410),该第一栅极电极(410)配置在邻近一栅极介电层(310)的传导鳍部(210)的第一侧上,其特征在于:
形成于该绝缘层(120)上的一第二栅极电极(410),该第二栅极电极(420)配置在邻近另一栅极介电层(310)的传导鳍部(210)的一相反侧上,且与该第一栅极电极(410)隔开。
9.如权利要求8所述的半导体装置(100),进一步包括:
形成于该传导鳍部(210)的上表面上的一介电层(140),其中第一栅极电极(410)与第二栅极电极(420)两者均未在介电层(140)上延伸。
10.如权利要求9所述的半导体装置(100),其中,该第一栅极电极(410)、第二栅极电极(420)与介电层(140)的上表面在同一平面上面。
CNB2003801027590A 2002-11-08 2003-10-14 具有分离栅极的双栅极半导体装置 Expired - Lifetime CN100459166C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/290,158 US6611029B1 (en) 2002-11-08 2002-11-08 Double gate semiconductor device having separate gates
US10/290,158 2002-11-08

Publications (2)

Publication Number Publication Date
CN1711644A true CN1711644A (zh) 2005-12-21
CN100459166C CN100459166C (zh) 2009-02-04

Family

ID=27757499

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801027590A Expired - Lifetime CN100459166C (zh) 2002-11-08 2003-10-14 具有分离栅极的双栅极半导体装置

Country Status (9)

Country Link
US (2) US6611029B1 (zh)
JP (1) JP2006505950A (zh)
KR (1) KR101029383B1 (zh)
CN (1) CN100459166C (zh)
AU (1) AU2003291641A1 (zh)
DE (1) DE10393687B4 (zh)
GB (1) GB2408849B (zh)
TW (1) TWI311371B (zh)
WO (1) WO2004044992A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479821A (zh) * 2010-11-30 2012-05-30 中国科学院微电子研究所 半导体器件及其形成方法
CN103022124A (zh) * 2011-09-22 2013-04-03 中芯国际集成电路制造(北京)有限公司 双栅晶体管及其制造方法
CN105448688A (zh) * 2014-07-09 2016-03-30 中芯国际集成电路制造(上海)有限公司 栅极的形成方法及半导体器件
CN105632936A (zh) * 2016-03-22 2016-06-01 上海华力微电子有限公司 一种双栅极鳍式场效应晶体管的制备方法
CN105977284A (zh) * 2015-03-13 2016-09-28 台湾积体电路制造股份有限公司 用于鳍式场效应晶体管的源极/漏极区及其形成方法

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982460B1 (en) * 2000-07-07 2006-01-03 International Business Machines Corporation Self-aligned gate MOSFET with separate gates
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6800910B2 (en) * 2002-09-30 2004-10-05 Advanced Micro Devices, Inc. FinFET device incorporating strained silicon in the channel region
US6611029B1 (en) * 2002-11-08 2003-08-26 Advanced Micro Devices, Inc. Double gate semiconductor device having separate gates
US6815268B1 (en) * 2002-11-22 2004-11-09 Advanced Micro Devices, Inc. Method for forming a gate in a FinFET device
US6855990B2 (en) * 2002-11-26 2005-02-15 Taiwan Semiconductor Manufacturing Co., Ltd Strained-channel multiple-gate transistor
US7091068B1 (en) * 2002-12-06 2006-08-15 Advanced Micro Devices, Inc. Planarizing sacrificial oxide to improve gate critical dimension in semiconductor devices
US7001837B2 (en) * 2003-01-17 2006-02-21 Advanced Micro Devices, Inc. Semiconductor with tensile strained substrate and method of making the same
US6803631B2 (en) * 2003-01-23 2004-10-12 Advanced Micro Devices, Inc. Strained channel finfet
US7148526B1 (en) 2003-01-23 2006-12-12 Advanced Micro Devices, Inc. Germanium MOSFET devices and methods for making same
US6855606B2 (en) * 2003-02-20 2005-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-rod devices
US7074656B2 (en) * 2003-04-29 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Doping of semiconductor fin devices
US7029959B1 (en) * 2003-05-06 2006-04-18 Advanced Micro Devices, Inc. Source and drain protection and stringer-free gate formation in semiconductor devices
US6756643B1 (en) * 2003-06-12 2004-06-29 Advanced Micro Devices, Inc. Dual silicon layer for chemical mechanical polishing planarization
US6913959B2 (en) * 2003-06-23 2005-07-05 Advanced Micro Devices, Inc. Method of manufacturing a semiconductor device having a MESA structure
US7087506B2 (en) * 2003-06-26 2006-08-08 International Business Machines Corporation Method of forming freestanding semiconductor layer
US7005330B2 (en) * 2003-06-27 2006-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for forming the gate electrode in a multiple-gate transistor
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US7078742B2 (en) * 2003-07-25 2006-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel semiconductor structure and method of fabricating the same
US7301206B2 (en) * 2003-08-01 2007-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors
US7355253B2 (en) 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates
US8008136B2 (en) * 2003-09-03 2011-08-30 Advanced Micro Devices, Inc. Fully silicided gate structure for FinFET devices
US6970373B2 (en) * 2003-10-02 2005-11-29 Intel Corporation Method and apparatus for improving stability of a 6T CMOS SRAM cell
US7888201B2 (en) * 2003-11-04 2011-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors
US7624192B2 (en) * 2003-12-30 2009-11-24 Microsoft Corporation Framework for user interaction with multiple network devices
US7105390B2 (en) * 2003-12-30 2006-09-12 Intel Corporation Nonplanar transistors with metal gate electrodes
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US8217450B1 (en) 2004-02-03 2012-07-10 GlobalFoundries, Inc. Double-gate semiconductor device with gate contacts formed adjacent sidewalls of a fin
US7060539B2 (en) * 2004-03-01 2006-06-13 International Business Machines Corporation Method of manufacture of FinFET devices with T-shaped fins and devices manufactured thereby
KR100620446B1 (ko) * 2004-03-09 2006-09-12 삼성전자주식회사 핀 전계 효과 트랜지스터 및 이의 제조 방법
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7262084B2 (en) * 2004-04-15 2007-08-28 International Business Machines Corporation Methods for manufacturing a finFET using a conventional wafer and apparatus manufactured therefrom
US7098477B2 (en) * 2004-04-23 2006-08-29 International Business Machines Corporation Structure and method of manufacturing a finFET device having stacked fins
US7579280B2 (en) 2004-06-01 2009-08-25 Intel Corporation Method of patterning a film
KR100634372B1 (ko) * 2004-06-04 2006-10-16 삼성전자주식회사 반도체 소자들 및 그 형성 방법들
US7452778B2 (en) * 2004-06-10 2008-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-wire devices and methods of fabrication
US7084461B2 (en) * 2004-06-11 2006-08-01 International Business Machines Corporation Back gate FinFET SRAM
KR100541657B1 (ko) * 2004-06-29 2006-01-11 삼성전자주식회사 멀티 게이트 트랜지스터의 제조방법 및 이에 의해 제조된멀티 게이트 트랜지스터
US7042009B2 (en) * 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US8669145B2 (en) * 2004-06-30 2014-03-11 International Business Machines Corporation Method and structure for strained FinFET devices
KR100618852B1 (ko) 2004-07-27 2006-09-01 삼성전자주식회사 높은 동작 전류를 갖는 반도체 소자
US6951784B1 (en) 2004-08-05 2005-10-04 International Business Machines Corporation Three-mask method of constructing the final hard mask used for etching the silicon fins for FinFETs
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US7348641B2 (en) * 2004-08-31 2008-03-25 International Business Machines Corporation Structure and method of making double-gated self-aligned finFET having gates of different lengths
US7071064B2 (en) * 2004-09-23 2006-07-04 Intel Corporation U-gate transistors and methods of fabrication
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7241649B2 (en) * 2004-10-29 2007-07-10 International Business Machines Corporation FinFET body contact structure
WO2006069340A2 (en) * 2004-12-21 2006-06-29 Carnegie Mellon University Lithography and associated methods, devices, and systems
US7193279B2 (en) * 2005-01-18 2007-03-20 Intel Corporation Non-planar MOS structure with a strained channel region
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US7288805B2 (en) * 2005-02-24 2007-10-30 International Business Machines Corporation Double gate isolation
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
EP1893922B1 (en) * 2005-06-16 2009-05-06 VKR Holding A/S Solar collector
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7411252B2 (en) * 2005-06-21 2008-08-12 International Business Machines Corporation Substrate backgate for trigate FET
US7279375B2 (en) * 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
CN100442295C (zh) * 2005-08-05 2008-12-10 中芯国际集成电路制造(上海)有限公司 确定半导体ic可靠性可比性的方法
US7402875B2 (en) * 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US7400031B2 (en) * 2005-09-19 2008-07-15 International Business Machines Corporation Asymmetrically stressed CMOS FinFET
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090416A1 (en) * 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7566609B2 (en) * 2005-11-29 2009-07-28 International Business Machines Corporation Method of manufacturing a semiconductor structure
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7402856B2 (en) * 2005-12-09 2008-07-22 Intel Corporation Non-planar microelectronic device having isolation element to mitigate fringe effects and method to fabricate same
US7439588B2 (en) * 2005-12-13 2008-10-21 Intel Corporation Tri-gate integration with embedded floating body memory cell using a high-K dual metal gate
US7512017B2 (en) * 2005-12-21 2009-03-31 Intel Corporation Integration of planar and tri-gate devices on the same substrate
US7525160B2 (en) 2005-12-27 2009-04-28 Intel Corporation Multigate device with recessed strain regions
US7396711B2 (en) 2005-12-27 2008-07-08 Intel Corporation Method of fabricating a multi-cornered film
US20070148926A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Dual halo implant for improving short channel effect in three-dimensional tri-gate transistors
JP2007180362A (ja) * 2005-12-28 2007-07-12 Toshiba Corp 半導体装置
US7545008B2 (en) * 2006-02-03 2009-06-09 The Hong Kong University Of Science And Technology Complementary metal-oxide-semiconductor transistor structure for high density and high performance integrated circuits
EP1987541A1 (en) * 2006-02-13 2008-11-05 Nxp B.V. Double-gate semiconductor devices having gates with different work functions and methods of manufacture thereof
US20070235763A1 (en) * 2006-03-29 2007-10-11 Doyle Brian S Substrate band gap engineered multi-gate pMOS devices
US20070232002A1 (en) * 2006-03-29 2007-10-04 Chang Peter L D Static random access memory using independent double gate transistors
US7425500B2 (en) 2006-03-31 2008-09-16 Intel Corporation Uniform silicide metal on epitaxially grown source and drain regions of three-dimensional transistors
US7407847B2 (en) * 2006-03-31 2008-08-05 Intel Corporation Stacked multi-gate transistor design and method of fabrication
US7449373B2 (en) * 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
US20090321830A1 (en) 2006-05-15 2009-12-31 Carnegie Mellon University Integrated circuit device, system, and method of fabrication
US7670928B2 (en) * 2006-06-14 2010-03-02 Intel Corporation Ultra-thin oxide bonding for S1 to S1 dual orientation bonding
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7435683B2 (en) * 2006-09-15 2008-10-14 Intel Corporation Apparatus and method for selectively recessing spacers on multi-gate devices
US20080097346A1 (en) * 2006-09-19 2008-04-24 Alcon, Inc. Trocar cannula
US7700470B2 (en) 2006-09-22 2010-04-20 Intel Corporation Selective anisotropic wet etching of workfunction metal for semiconductor devices
US7538391B2 (en) * 2007-01-09 2009-05-26 International Business Machines Corporation Curved FINFETs
US20080173942A1 (en) * 2007-01-22 2008-07-24 International Business Machines Corporation STRUCTURE AND METHOD OF MANUFACTURING A STRAINED FinFET WITH STRESSED SILICIDE
CN101939830A (zh) * 2008-02-11 2011-01-05 Nxp股份有限公司 具有分立栅极的FinFET及其制造方法
JP5285947B2 (ja) * 2008-04-11 2013-09-11 株式会社東芝 半導体装置、およびその製造方法
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US20100155801A1 (en) * 2008-12-22 2010-06-24 Doyle Brian S Integrated circuit, 1T-1C embedded memory cell containing same, and method of manufacturing 1T-1C memory cell for embedded memory application
US7999298B2 (en) * 2008-12-30 2011-08-16 Intel Corporation Embedded memory cell and method of manufacturing same
US8105901B2 (en) * 2009-07-27 2012-01-31 International Business Machines Corporation Method for double pattern density
US9059001B2 (en) * 2011-12-16 2015-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with biased feature
US8785273B2 (en) 2012-04-11 2014-07-22 International Business Machines Corporation FinFET non-volatile memory and method of fabrication
US9024387B2 (en) 2012-06-25 2015-05-05 International Business Machines Corporation FinFET with body contact
US9018713B2 (en) 2012-06-25 2015-04-28 International Business Machines Corporation Plural differential pair employing FinFET structure
CN103811543B (zh) * 2012-11-05 2018-09-18 中国科学院微电子研究所 半导体器件及其制造方法
US9525072B2 (en) * 2014-08-11 2016-12-20 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of formation
CN106952959B (zh) * 2017-03-16 2020-04-03 北京大学 一种锗硅沟道鳍式场效应晶体管及其制备方法
CN106898553A (zh) * 2017-03-16 2017-06-27 北京大学 一种鳍式场效应晶体管及其制备方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1601059A (en) * 1978-05-31 1981-10-21 Secr Defence Fet devices and their fabrication
US5315143A (en) * 1992-04-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. High density integrated semiconductor device
US5910912A (en) * 1992-10-30 1999-06-08 International Business Machines Corporation Flash EEPROM with dual-sidewall gate
JP3252578B2 (ja) * 1993-12-27 2002-02-04 ソニー株式会社 平面型絶縁ゲート電界効果トランジスタの製法
US5757038A (en) * 1995-11-06 1998-05-26 International Business Machines Corporation Self-aligned dual gate MOSFET with an ultranarrow channel
DE19846063A1 (de) * 1998-10-07 2000-04-20 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung eines Double-Gate MOSFETs
US6333247B1 (en) * 1999-02-10 2001-12-25 International Business Machines Corporation Two-step MOSFET gate formation for high-density devices
US6159782A (en) * 1999-08-05 2000-12-12 Advanced Micro Devices, Inc. Fabrication of field effect transistors having dual gates with gate dielectrics of high dielectric constant
US6483171B1 (en) * 1999-08-13 2002-11-19 Micron Technology, Inc. Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
US6252284B1 (en) * 1999-12-09 2001-06-26 International Business Machines Corporation Planarized silicon fin device
KR100353551B1 (ko) * 2000-01-28 2002-09-27 주식회사 하이닉스반도체 실리사이드 형성방법
JP4044276B2 (ja) * 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US6396108B1 (en) * 2000-11-13 2002-05-28 Advanced Micro Devices, Inc. Self-aligned double gate silicon-on-insulator (SOI) device
US6472258B1 (en) * 2000-11-13 2002-10-29 International Business Machines Corporation Double gate trench transistor
US6300182B1 (en) * 2000-12-11 2001-10-09 Advanced Micro Devices, Inc. Field effect transistor having dual gates with asymmetrical doping for reduced threshold voltage
JP3543117B2 (ja) * 2001-03-13 2004-07-14 独立行政法人産業技術総合研究所 二重ゲート電界効果トランジスタ
FR2822293B1 (fr) * 2001-03-13 2007-03-23 Nat Inst Of Advanced Ind Scien Transistor a effet de champ et double grille, circuit integre comportant ce transistor, et procede de fabrication de ce dernier
US6458662B1 (en) * 2001-04-04 2002-10-01 Advanced Micro Devices, Inc. Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed
US6689650B2 (en) * 2001-09-27 2004-02-10 International Business Machines Corporation Fin field effect transistor with self-aligned gate
US6657259B2 (en) * 2001-12-04 2003-12-02 International Business Machines Corporation Multiple-plane FinFET CMOS
US6610576B2 (en) * 2001-12-13 2003-08-26 International Business Machines Corporation Method for forming asymmetric dual gate transistor
US20030151077A1 (en) * 2002-02-13 2003-08-14 Leo Mathew Method of forming a vertical double gate semiconductor device and structure thereof
US6635909B2 (en) * 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US6657252B2 (en) * 2002-03-19 2003-12-02 International Business Machines Corporation FinFET CMOS with NVRAM capability
US6770516B2 (en) * 2002-09-05 2004-08-03 Taiwan Semiconductor Manufacturing Company Method of forming an N channel and P channel FINFET device on the same semiconductor substrate
US6833588B2 (en) * 2002-10-22 2004-12-21 Advanced Micro Devices, Inc. Semiconductor device having a U-shaped gate structure
US6611029B1 (en) * 2002-11-08 2003-08-26 Advanced Micro Devices, Inc. Double gate semiconductor device having separate gates
US7214991B2 (en) * 2002-12-06 2007-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS inverters configured using multiple-gate transistors
US6812119B1 (en) * 2003-07-08 2004-11-02 Advanced Micro Devices, Inc. Narrow fins by oxidation in double-gate finfet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479821A (zh) * 2010-11-30 2012-05-30 中国科学院微电子研究所 半导体器件及其形成方法
CN102479821B (zh) * 2010-11-30 2014-07-16 中国科学院微电子研究所 半导体器件及其形成方法
CN103022124A (zh) * 2011-09-22 2013-04-03 中芯国际集成电路制造(北京)有限公司 双栅晶体管及其制造方法
CN105448688A (zh) * 2014-07-09 2016-03-30 中芯国际集成电路制造(上海)有限公司 栅极的形成方法及半导体器件
CN105977284A (zh) * 2015-03-13 2016-09-28 台湾积体电路制造股份有限公司 用于鳍式场效应晶体管的源极/漏极区及其形成方法
CN105977284B (zh) * 2015-03-13 2019-03-15 台湾积体电路制造股份有限公司 用于鳍式场效应晶体管的源极/漏极区及其形成方法
CN105632936A (zh) * 2016-03-22 2016-06-01 上海华力微电子有限公司 一种双栅极鳍式场效应晶体管的制备方法
CN105632936B (zh) * 2016-03-22 2018-10-16 上海华力微电子有限公司 一种双栅极鳍式场效应晶体管的制备方法

Also Published As

Publication number Publication date
JP2006505950A (ja) 2006-02-16
CN100459166C (zh) 2009-02-04
TWI311371B (en) 2009-06-21
DE10393687T5 (de) 2005-10-06
GB2408849B (en) 2006-06-28
GB2408849A (en) 2005-06-08
KR101029383B1 (ko) 2011-04-15
GB0504833D0 (en) 2005-04-13
AU2003291641A1 (en) 2004-06-03
US20040126975A1 (en) 2004-07-01
DE10393687B4 (de) 2012-12-06
KR20050062656A (ko) 2005-06-23
WO2004044992A1 (en) 2004-05-27
US6611029B1 (en) 2003-08-26
TW200421595A (en) 2004-10-16

Similar Documents

Publication Publication Date Title
CN1711644A (zh) 具有分离栅极的双栅极半导体装置
JP4745663B2 (ja) ダブルゲートFin−FETデバイスを形成する方法
JP5408880B2 (ja) ストレインド・チャネル領域を伴った非平面mos構造
TWI222711B (en) Chip incorporating partially-depleted, fully-depleted and multiple-gate transistors and method of fabricating the multiple-gate transistor
JP5122476B2 (ja) ソース領域とドレイン領域との間にボックス層を有する歪みシリコンmosデバイス
US9761696B2 (en) Self-aligned trench MOSFET and method of manufacture
CN1287433C (zh) 三栅极器件的加工方法
JP5869753B2 (ja) 埋め込み拡張領域を有するsoiトランジスタ、及びその形成方法
KR101070845B1 (ko) FinFET 디바이스 구조의 형성 방법
US7833863B1 (en) Method of manufacturing a closed cell trench MOSFET
CN100346456C (zh) 一种mosfet半导体及其制造方法
US7919364B2 (en) Semiconductor devices and methods of manufacture thereof
CN1742362A (zh) 三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法
US20040145011A1 (en) Trench power MOSFET in silicon carbide and method of making the same
US20120032732A1 (en) Hybrid integrated semiconductor tri-gate and split dual-gate finfet devices and method for manufacturing
CN101079447A (zh) 半导体元件、集成电路以及半导体元件的制造方法
CN1711630A (zh) 磨平栅极材料以改善半导体装置中的栅极特征尺寸的方法
CN1945854A (zh) 应变半导体器件及其制造方法
CN1763970A (zh) 薄型绝缘半导体之绝缘间隙壁
US7335945B2 (en) Multi-gate MOS transistor and method of manufacturing the same
JP2006507684A (ja) 2トランジスタnorデバイス
CN1333923A (zh) 场效应控制的晶体管及其制造方法
CN1879224A (zh) 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
KR100467527B1 (ko) 이중 게이트 mosfet 및 그 제조방법
CN103383961A (zh) FinFET结构及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090204