CN1266277A - 形成cmos器件的双金属栅结构的方法 - Google Patents

形成cmos器件的双金属栅结构的方法 Download PDF

Info

Publication number
CN1266277A
CN1266277A CN00103629A CN00103629A CN1266277A CN 1266277 A CN1266277 A CN 1266277A CN 00103629 A CN00103629 A CN 00103629A CN 00103629 A CN00103629 A CN 00103629A CN 1266277 A CN1266277 A CN 1266277A
Authority
CN
China
Prior art keywords
conducting material
electric conducting
grid
transistor
work function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00103629A
Other languages
English (en)
Inventor
G·D·维尔克
S·R·萨默费尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN1266277A publication Critical patent/CN1266277A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Abstract

在半导体衬底上形成分别具有第一和第二栅极的第一和第二晶体管的方法,包括:形成绝缘地置于半导体衬底上的有一功函数的导电材料;转换导电材料的一部分从而改变其功函数,导电材料和被转换的导电材料分别形成第一和第二栅极。第一和第二晶体管分别为NMOS和PMOS器件,第一和第二晶体管形成CMOS器件。导电材料包括Ta、Mo、Ti及其任意组合。转换步骤包括使导电材料的这部分经受包括含氮气体的等离子体。

Description

形成CMOS器件的双金属栅结构的方法
这里通过参考而引入以下共同转让的专利/专利申请:
专利号/序号    申请日       TI文件号
               **/**/1996   TI-22027
               **/**/1998   TI-22748
               **/**/1998   TI-24776
本发明属于半导体器件制造和加工,尤其涉及制造CMOS器件的金属栅结构的方法。
随着电子器件变得越来越复杂,器件上不断地需要越来越多的晶体管。此外,需要减少功耗,同时提高器件的速度。对这些需求的至少部分答案包括减少每个晶体管所占据的面积。然而,这可能对一个或多个其它需求造成不利影响。更具体来说,随着晶体管按比例缩小,使得栅结构也按比例缩小,这增加了栅极的电阻。因此,功耗增大且器件速度降低。
过去为减少栅结构的片电阻率已进行了几种尝试。首先,以n型或p型杂质对多晶硅进行更重的掺杂。然后,使栅极上部的钨或钛变成硅化物。目前,使用硅化钴从而减少较小几何图形的电阻率。下一个类似的解决方案将涉及金属栅结构。
金属栅结构提供了实际上与栅极宽度无关的较低的片电阻率。然而,必须在把许多金属栅材料应用于标准半导体工艺流程前克服几个问题。一个问题是的许多金属的不稳定性仅次于SiO2,后者通常用于栅介电层。另一个问题是许多金属在氧化时导电率变小。
已使用铝和钨来形成栅结构。由于上述问题,所以铝可能不是一个好的选择,钨具有在p型多晶硅(多晶)和n型多晶的功函数之间的功函数。然而,与钨有关的问题是,随着所加电压变得越来越小,此功函数为中等禁带(midgap)且不可变(与n型和p型多晶相比),可能难于提供比PMOS和NMOS器件的阈值大的栅极电势。
在对PMOS和NMOS器件使用一中等禁带宽度金属来克服此阈值电压问题的尝试中,已把铝用于一种类型的器件,而把铂用于另一种类型的器件。然而,铂很昂贵且难于加工,而铝将遭受上述问题。因此,需要一种栅极材料,这种材料的导电率与栅极宽度无关,且对PMOS器件和NMOS器件具有不同的功函数。
本发明的一个实施例是一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,该方法包括以下步骤:形成绝缘地置于半导体衬底的第一部分上的第一导电材料,此第一导电材料具有第一功函数;形成绝缘地置于半导体衬底的第二部分上的第二导电材料,此第二导电材料包括第一导电材料但具有不同于第一功函数的第二功函数;其中第一导电材料用于形成第一栅极,而第二导电材料用于形成第二栅极。在一可选实施例中,第一导电材料包括Ta,第二导电材料包括TaxNy。在另一可选实施例中,第一导电材料包括Mo,第二导电材料包括MoxNy。在又一个可选实施例中,第一导电材料包括Ti,第二导电材料包括TixNy
本发明的另一个实施例是一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,该方法包括以下步骤:形成绝缘地置于半导体衬底上的导电材料,此导电材料具有一功函数;转换此导电材料的一部分,从而改变被转换的导电材料的功函数,此导电材料形成第一栅极而被转换的导电材料形成第二栅极。最好,第一晶体管为NMOS器件,第二晶体管为PMOS器件,且第一晶体管和第二晶体管形成一CMOS器件。导电材料最好包括从以下构成的组中选出的导体:Ta、Mo、Ti及其任意组合。最好,转换导电材料的一部分的步骤包括:使导电材料的这部分经受包括含氮气体的等离子体。
图1是本发明一个实施例的方法的部分制成的CMOS器件的剖面图。
图2是本发明一个实施例的方法的流程图。
图3a-3e是使用图2所示本发明的方法的部分制成的半导体器件的剖面图。
图4是示出不同材料的功函数的图表。
除非特指,不同图中的相同标号指相应的结构。这些图仅仅是说明本发明的概念。这些图不按比例绘制。
大体上,本发明涉及CMOS器件及其制造方法,该器件包括用于NMOS器件或PMOS器件的金属栅极及可用于其它器件即PMOS器件或NMOS器件(分别)栅极的金属转换形式。最好,本发明涉及形成NMOS器件的栅极(至少部.分为钽)以及形成PMOS晶体管的栅极(至少部分为氮化钽)。因此,本发明涉及例如钽等同一种碱金属,但对一种器件的栅极使用碱金属的转换形式。本发明可使用一次性(disposable)栅的方法(基本上如图2和3a-3e所示)或以传统的栅形成方法(基本上如图1所示)来制成本发明。
参考图1,可使用传统的金属来制造本发明的CMOS器件100,或者它可用图2和3a-3e所示的一次性栅的方法来制造。形成栅结构的传统方法包括形成隔离结构118,它可以是LOCOS型隔离结构、浅沟槽隔离结构(STI-在图1中作为隔离结构118示出)或掺杂的隔离区。栅绝缘层与与上面的栅导体层一起形成。在本发明中,栅绝缘层最好包括二氧化硅、氮化硅、介电常数高的材料(诸如PZT、BST、五氧化二钽或其它通常使用的材料)、硅酸盐、以上一种或多种材料的组合、氮氧化合物或其堆层(stack)。栅导电层最好包括可选择性地转换从而改变其功函数的金属。其例子是钛、钽、钼或其它类似金属。在对栅结构进行构图并蚀刻前或在这些步骤后,转化栅导体的一部分,从而改变其功函数。最好,这是通过对这部分导电层(或已构图和蚀刻的栅结构的一部分)进行氮化或使用这部分栅结构上的金属/氮化物/金属堆层从而对这层金属进行退火将使氮四处散布来实现的。由于导电材料相对薄(最好在5到50nm的数量级),所以可通过在含氮气氛(诸如氨)中对该层的这部分(或已被构图和蚀刻的这些特定栅导体)进行退火,或者使导电层或栅结构的选中部分经受混合成等离子体的含氮气体(最好是N2)对将要氮化的这些部分进行氮化。然而,可与NMOS栅结构分开地形成PMOS栅结构,而非已形成的导电层的氮化部分。因此,一个栅结构可由Ta、Mo或Ti来形成,另一个栅结构可与Ta、Mo或Ti和含氮源(诸如N2)共同淀积。或者,氮化物的形式可包括Ta、Mo或Ti以及含氮层(诸如TaN、MoN或TiN)的堆层,然后可对此氮化物进行退火从而使氮在这些栅结构中四处散布。最好,NMOS器件102的栅导体106将包括Ta、Mo或Ti,而PMOS器件104的栅导体108将包括氮和Ta、Mo、Ti或其组合。
在形成栅结构后,形成源/漏外延(如果使用)和源/漏区114和116。此后接着是标准处理。
本发明的另一个实施例如图2和3a-3e所示。本实施例的细节适用于以上实施例。参考图2的步骤202和图3a,形成隔离结构316。隔离结构316可包括LOCOS、STI或掺杂的隔离区。接着,形成第一和第二无效(dummy)层。第一无效层可包括形成栅绝缘体的材料,或者它可以仅为无效层。如果第一层包括栅绝缘材料(最好为二氧化硅、氮化硅、氮氧化合物、BST、五氧化二钽、硅酸盐或其它栅绝缘材料),则今后将不除去该层且在步骤214中不形成栅绝缘层324。对第一和第二无效层进行构图和蚀刻,从而形成PMOS器件302和NMOS器件304的无效栅结构。此无效栅结构包括两层。如果底层(层310和311)实际上不包括栅绝缘材料,则底层应包括可被除去而不损坏衬底301或在步骤212中除去时不对周围结构产生不利影响的材料。如果第一层是可除去的层,则第一和第二层可包括相同的材料。因此,结构310和306及311和308将包括相同的材料。最好,这些结构包括在除去时基本上不对下面的衬底301或周围结构(诸如侧壁绝缘体318和319以及平面绝缘材料322)产生不利影响的材料。因此,结构310、306、311和308可包括对下面的硅衬底和氧化物或氮化物侧壁绝缘体可选择性地除去的氮化硅、二氧化硅、多晶硅、硅锗或任何其它材料。
参考图2的步骤204,使用隔离结构316及与其对准的栅结构(结构310/306和311/308)来形成源/漏外延(如果全部)。PMOS器件302的源/漏外延312最好包括p型杂质(诸如硼),NMOS器件304的源/漏外延314最好包括n型杂质(诸如磷或砷)。
参考图2的步骤206和图3b,形成侧壁绝缘体318和319。侧壁绝缘体318和319可包括热生长的氧化硅、淀积的氧化硅、氮化硅、氮氧化合物或其组合或堆层。参考步骤208,通过把硼掺入衬底来形成源/漏区313,通过把砷或磷掺入衬底来形成源/漏区315。
参考图2的步骤210和图3c,形成绝缘层322。最好,绝缘层322流到晶片上,从而其顶面与一次性的栅结构和侧壁绝缘体大致处于相同高度。然而,绝缘层322可被淀积或流到晶片上,然后使用化学机械抛光(CMP)把它抛光到与一次性的栅结构和侧壁绝缘体同延(co-extensive)。最好,绝缘层包括可流动的氧化物(诸如气凝胶、干凝胶或HSQ)、BPSG、TEOS、PETEOS、PSG、FSG或其它氧化硅材料。
参考图3d和图2的步骤212,除去一次性的栅结构(如果不包括栅绝缘材料,则为结构306和308及结构310和311)。最好,这是如此实现的,从而衬底301、侧壁绝缘体318和319、绝缘层322或栅绝缘体310和311(如果它们是由这些器件所需的栅绝缘材料形成的)基本上不退化或不被蚀刻掉。
参考图2的步骤214,如果结构310和311不包括所需的栅材料且在步骤212中被除去,则形成栅绝缘层324。栅绝缘层324最好包括二氧化硅、氮化硅、氮氧化合物、硅酸盐或k高的材料(诸如BST、五氧化二钽或其它适当的材料)。
在图2的步骤216中形成导体326。最好,导体326包括可选择性地转换从而选择性地改变其功函数的Ta、Mo、Ti或其它适当的导体。然而,导体326的一部分可包括Ta、Mo或Ti,而其它部分包括转换形式的Ta、Mo或Ti(最好是氮化物的形式)。转换的形式可以是Ta、Mo或Ti与氮共同淀积,或者可以是Ta、Mo和/或Ti与氮化物的堆层。最好,导体326包括Ta、Mo或Ti且在后来转换。导体326应足够厚,从而其功函数限定栅极的作用。最好,导体326的厚度在5到50nm左右的数量级(厚度为大致8到10个单位晶胞左右或更大)
在对导体326和绝缘层324进行构图和蚀刻前或在此步骤后,转换一部分(或栅导体之一-导体327)从而改变其功函数。这可通过掩蔽导体326(或导体329)的这一部分并使导体326的暴露部分或导体327经受转换剂来实现。最好,这种转换是通过使晶片经受混合成等离子体的氮气(最好是N2)来产生。此步骤最好在环境温度或300到500℃下进行20秒到2分钟左右。此步骤的目的是基本上把Ta、Mo或Ti完全转化成TaxNy、MoxNy或TixNy
一旦此转换完成并已对栅结构进行构图和蚀刻,可形成另一导电材料,从而填充栅极的其余部分(如果需要)。最好,此附加的导电材料包括钨、铝或其它导电材料。
虽然这里描述了本发明的特定实施例,但不把它们作为对本发明范围的限制。根据说明书的方法,将使本发明的许多实施例对本领域内的技术人员变得明显起来。本发明的范围仅限于所附的权利要求书。

Claims (9)

1.一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,其特征在于所述方法包括以下步骤:
形成绝缘地置于所述半导体衬底的第一部分上的第一导电材料,所述第一导电材料具有第一功函数;
形成绝缘地置于所述半导体衬底的第二部分上的第二导电材料,所述第二导电材料包括所述第一导电材料但具有不同于所述第一功函数的第二功函数;
其中所述第一导电材料用于形成所述第一栅极,而所述第二导电材料用于形成所述第二栅极。
2.如权利要求1所述的方法,其特征在于所述第一导电材料包括Ta,所述第二导电材料包括TaxNy
3.如权利要求1所述的方法,其特征在于所述第一导电材料包括Mo,第二导电材料包括MoxNy
4.如权利要求1所述的方法,其特征在于所述第一导电材料包括Ti,第二导电材料包括TixNy
5.一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,其特征在于所述方法包括以下步骤:
形成绝缘地置于所述半导体衬底上的导电材料,所述导电材料具有一功函数;以及
转换所述导电材料的一部分,从而改变所述被转换的导电材料的功函数,所述导电材料形成所述第一栅极而所述被转换的导电材料形成所述第二栅极。
6.如权利要求5所述的方法,其特征在于所述第一晶体管为NMOS器件,所述第二晶体管为PMOS器件。
7.如权利要求6所述的方法,其特征在于所述第一晶体管和所述第二晶体管形成一CMOS器件。
8.如权利要求5所述的方法,其特征在于所述导电材料最好包括从以下构成的组中选出的导体:Ta、Mo、Ti及其任意组合。
9.如权利要求5所述的方法,其特征在于转换所述导电材料的一部分的所述步骤包括:使所述导电材料的所述部分经受包括含氮气体的等离子体。
CN00103629A 1999-02-26 2000-02-25 形成cmos器件的双金属栅结构的方法 Pending CN1266277A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12178699P 1999-02-26 1999-02-26
US60/121,786 1999-02-26

Publications (1)

Publication Number Publication Date
CN1266277A true CN1266277A (zh) 2000-09-13

Family

ID=22398780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00103629A Pending CN1266277A (zh) 1999-02-26 2000-02-25 形成cmos器件的双金属栅结构的方法

Country Status (7)

Country Link
US (1) US6291282B1 (zh)
EP (1) EP1032033A3 (zh)
JP (1) JP2000252371A (zh)
KR (1) KR20000058131A (zh)
CN (1) CN1266277A (zh)
SG (1) SG77280A1 (zh)
TW (1) TW444285B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311527C (zh) * 2003-05-06 2007-04-18 英特尔公司 一种用于制造具有金属栅电极的半导体器件的方法
CN100355043C (zh) * 2001-11-26 2007-12-12 先进微装置公司 具有金属栅极电极的半导体装置及其制程
CN100419992C (zh) * 2002-08-26 2008-09-17 微米技术有限公司 具有铟掺杂子区域的栅隔离区的半导体结构
CN100419999C (zh) * 2003-09-24 2008-09-17 国际商业机器公司 制造cmos场效应晶体管的方法和设备
CN100428248C (zh) * 2004-12-24 2008-10-22 清华大学 Cmos功耗平衡延时不敏感加法器用的进位产生电路
CN100440439C (zh) * 2003-11-06 2008-12-03 英特尔公司 用于制造具有金属栅电极的半导体器件的方法
CN100490079C (zh) * 2004-01-09 2009-05-20 国际商业机器公司 具有金属栅电极和硅化物触点的fet栅极结构
CN101322240B (zh) * 2005-12-02 2011-12-14 国立大学法人东北大学 半导体装置
CN101151724B (zh) * 2003-11-28 2012-02-01 国际商业机器公司 金属碳化物栅极结构和制造方法
CN101930913B (zh) * 2009-06-26 2012-05-23 中芯国际集成电路制造(上海)有限公司 金属栅电极形成方法
CN102203923B (zh) * 2008-11-05 2014-09-03 美光科技公司 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法
WO2015014004A1 (zh) * 2013-08-01 2015-02-05 中国科学院微电子研究所 金属栅电极等效功函数调节方法
CN102637741B (zh) * 2004-10-29 2015-09-16 英特尔公司 应用金属氧化物半导体工艺的共振隧穿器件
CN106531618A (zh) * 2015-09-15 2017-03-22 联华电子股份有限公司 具有金属栅极结构的半导体元件的功函数调整方法

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264264B2 (ja) * 1999-03-01 2002-03-11 日本電気株式会社 相補型集積回路とその製造方法
US6383879B1 (en) 1999-12-03 2002-05-07 Agere Systems Guardian Corp. Semiconductor device having a metal gate with a work function compatible with a semiconductor device
JP3519662B2 (ja) * 2000-03-14 2004-04-19 松下電器産業株式会社 半導体装置及びその製造方法
JP3538108B2 (ja) * 2000-03-14 2004-06-14 松下電器産業株式会社 半導体装置及びその製造方法
TW466606B (en) * 2000-04-20 2001-12-01 United Microelectronics Corp Manufacturing method for dual metal gate electrode
US6444512B1 (en) * 2000-06-12 2002-09-03 Motorola, Inc. Dual metal gate transistors for CMOS process
US6465309B1 (en) * 2000-12-12 2002-10-15 Advanced Micro Devices, Inc. Silicide gate transistors
KR100422342B1 (ko) * 2000-12-29 2004-03-10 주식회사 하이닉스반도체 반도체 소자의 게이트 제조방법
US6537901B2 (en) * 2000-12-29 2003-03-25 Hynix Semiconductor Inc. Method of manufacturing a transistor in a semiconductor device
US6583012B1 (en) * 2001-02-13 2003-06-24 Advanced Micro Devices, Inc. Semiconductor devices utilizing differently composed metal-based in-laid gate electrodes
US7563715B2 (en) 2005-12-05 2009-07-21 Asm International N.V. Method of producing thin films
US9139906B2 (en) 2001-03-06 2015-09-22 Asm America, Inc. Doping with ALD technology
US6573134B2 (en) * 2001-03-27 2003-06-03 Sharp Laboratories Of America, Inc. Dual metal gate CMOS devices and method for making the same
US6518106B2 (en) 2001-05-26 2003-02-11 Motorola, Inc. Semiconductor device and a method therefor
KR100764341B1 (ko) * 2001-06-26 2007-10-05 주식회사 하이닉스반도체 반도체소자의 제조방법
JP3682920B2 (ja) * 2001-10-30 2005-08-17 富士通株式会社 半導体装置の製造方法
US6653698B2 (en) 2001-12-20 2003-11-25 International Business Machines Corporation Integration of dual workfunction metal gate CMOS devices
US6696345B2 (en) * 2002-01-07 2004-02-24 Intel Corporation Metal-gate electrode for CMOS transistor applications
US6894355B1 (en) * 2002-01-11 2005-05-17 Advanced Micro Devices, Inc. Semiconductor device with silicide source/drain and high-K dielectric
US6794234B2 (en) * 2002-01-30 2004-09-21 The Regents Of The University Of California Dual work function CMOS gate technology based on metal interdiffusion
KR100463239B1 (ko) * 2002-03-30 2004-12-29 주식회사 하이닉스반도체 씨모스 반도체장치의 제조 방법
KR100502407B1 (ko) * 2002-04-11 2005-07-19 삼성전자주식회사 고유전막과 높은 도전성의 전극을 갖는 게이트 구조체 및그 형성 방법
US7067439B2 (en) 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
KR100476926B1 (ko) * 2002-07-02 2005-03-17 삼성전자주식회사 반도체 소자의 듀얼 게이트 형성방법
US7176483B2 (en) * 2002-08-12 2007-02-13 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US6833556B2 (en) * 2002-08-12 2004-12-21 Acorn Technologies, Inc. Insulated gate field effect transistor having passivated schottky barriers to the channel
US7084423B2 (en) 2002-08-12 2006-08-01 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US6645818B1 (en) * 2002-11-13 2003-11-11 Chartered Semiconductor Manufacturing Ltd. Method to fabricate dual-metal gate for N- and P-FETs
US7045406B2 (en) * 2002-12-03 2006-05-16 Asm International, N.V. Method of forming an electrode with adjusted work function
US6858524B2 (en) * 2002-12-03 2005-02-22 Asm International, Nv Method of depositing barrier layer for metal gates
US7122414B2 (en) * 2002-12-03 2006-10-17 Asm International, Inc. Method to fabricate dual metal CMOS devices
US6828181B2 (en) * 2003-05-08 2004-12-07 International Business Machines Corporation Dual gate material process for CMOS technologies
JP4091530B2 (ja) * 2003-07-25 2008-05-28 株式会社東芝 半導体装置の製造方法
US7030430B2 (en) * 2003-08-15 2006-04-18 Intel Corporation Transition metal alloys for use as a gate electrode and devices incorporating these alloys
JP3790237B2 (ja) * 2003-08-26 2006-06-28 株式会社東芝 半導体装置の製造方法
JP4143505B2 (ja) * 2003-09-03 2008-09-03 株式会社半導体理工学研究センター Mos型半導体装置及びその製造方法
US6872613B1 (en) * 2003-09-04 2005-03-29 Advanced Micro Devices, Inc. Method for integrating metals having different work functions to form CMOS gates having a high-k gate dielectric and related structure
US20050070109A1 (en) * 2003-09-30 2005-03-31 Feller A. Daniel Novel slurry for chemical mechanical polishing of metals
US7952118B2 (en) * 2003-11-12 2011-05-31 Samsung Electronics Co., Ltd. Semiconductor device having different metal gate structures
US7005333B2 (en) * 2003-12-30 2006-02-28 Infineon Technologies Ag Transistor with silicon and carbon layer in the channel region
US7002224B2 (en) * 2004-02-03 2006-02-21 Infineon Technologies Ag Transistor with doped gate dielectric
US7348265B2 (en) * 2004-03-01 2008-03-25 Texas Instruments Incorporated Semiconductor device having a silicided gate electrode and method of manufacture therefor
TWI252539B (en) * 2004-03-12 2006-04-01 Toshiba Corp Semiconductor device and manufacturing method therefor
JP4546201B2 (ja) * 2004-03-17 2010-09-15 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7094671B2 (en) * 2004-03-22 2006-08-22 Infineon Technologies Ag Transistor with shallow germanium implantation region in channel
US7226826B2 (en) * 2004-04-16 2007-06-05 Texas Instruments Incorporated Semiconductor device having multiple work functions and method of manufacture therefor
US7153784B2 (en) * 2004-04-20 2006-12-26 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
US20050250258A1 (en) * 2004-05-04 2005-11-10 Metz Matthew V Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US7397090B2 (en) * 2004-06-10 2008-07-08 Agency For Science, Technology And Research Gate electrode architecture for improved work function tuning and method of manufacture
US7439113B2 (en) * 2004-07-12 2008-10-21 Intel Corporation Forming dual metal complementary metal oxide semiconductor integrated circuits
US7390709B2 (en) 2004-09-08 2008-06-24 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
US7126199B2 (en) * 2004-09-27 2006-10-24 Intel Corporation Multilayer metal gate electrode
US7902058B2 (en) * 2004-09-29 2011-03-08 Intel Corporation Inducing strain in the channels of metal gate transistors
US20060172480A1 (en) * 2005-02-03 2006-08-03 Taiwan Semiconductor Manufacturing Company, Ltd. Single metal gate CMOS device design
JP4607645B2 (ja) 2005-04-04 2011-01-05 株式会社東芝 半導体装置及びその製造方法
US20070048920A1 (en) * 2005-08-25 2007-03-01 Sematech Methods for dual metal gate CMOS integration
US7332433B2 (en) * 2005-09-22 2008-02-19 Sematech Inc. Methods of modulating the work functions of film layers
JP4904472B2 (ja) * 2005-11-18 2012-03-28 東京エレクトロン株式会社 半導体装置の製造方法
JP2007242848A (ja) * 2006-03-08 2007-09-20 Mitsubishi Electric Corp 基板の製造方法及び基板処理装置
US7678710B2 (en) 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
JP4828982B2 (ja) * 2006-03-28 2011-11-30 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5590886B2 (ja) 2006-09-26 2014-09-17 アプライド マテリアルズ インコーポレイテッド 欠陥パシベーションのための高kゲート積層構造に対するフッ素プラズマ処理
KR101427142B1 (ko) * 2006-10-05 2014-08-07 에이에스엠 아메리카, 인코포레이티드 금속 규산염 막의 원자층 증착
US7682891B2 (en) * 2006-12-28 2010-03-23 Intel Corporation Tunable gate electrode work function material for transistor applications
JP5253797B2 (ja) * 2007-12-07 2013-07-31 株式会社東芝 半導体装置
US7804141B2 (en) * 2008-02-19 2010-09-28 United Microelectronics Corp. Semiconductor element structure and method for making the same
US8945675B2 (en) 2008-05-29 2015-02-03 Asm International N.V. Methods for forming conductive titanium oxide thin films
US8236686B2 (en) 2008-05-30 2012-08-07 International Business Machines Corporation Dual metal gates using one metal to alter work function of another metal
US8524588B2 (en) 2008-08-18 2013-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a single metal that performs N work function and P work function in a high-k/metal gate process
US8778754B2 (en) 2008-09-15 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a single metal that performs N and P work functions in high-K/metal gate devices
US8557702B2 (en) 2009-02-02 2013-10-15 Asm America, Inc. Plasma-enhanced atomic layers deposition of conductive material over dielectric layers
US7943457B2 (en) * 2009-04-14 2011-05-17 International Business Machines Corporation Dual metal and dual dielectric integration for metal high-k FETs
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8211775B1 (en) 2011-03-09 2012-07-03 United Microelectronics Corp. Method of making transistor having metal gate
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8519487B2 (en) 2011-03-21 2013-08-27 United Microelectronics Corp. Semiconductor device
US9269634B2 (en) 2011-05-16 2016-02-23 Globalfoundries Inc. Self-aligned metal gate CMOS with metal base layer and dummy gate structure
US8771536B2 (en) 2011-08-01 2014-07-08 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8445345B2 (en) 2011-09-08 2013-05-21 International Business Machines Corporation CMOS structure having multiple threshold voltage devices
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US20130260564A1 (en) * 2011-09-26 2013-10-03 Applied Materials, Inc. Insensitive dry removal process for semiconductor integration
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
JP5390654B2 (ja) * 2012-03-08 2014-01-15 株式会社東芝 半導体装置の製造方法
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
EP2750167A1 (en) * 2012-12-31 2014-07-02 Imec Method for tuning the effective work function of a gate structure in a semiconductor device
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US20150214331A1 (en) 2014-01-30 2015-07-30 Globalfoundries Inc. Replacement metal gate including dielectric gate material
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US9523148B1 (en) 2015-08-25 2016-12-20 Asm Ip Holdings B.V. Process for deposition of titanium oxynitride for use in integrated circuit fabrication
US9540729B1 (en) 2015-08-25 2017-01-10 Asm Ip Holding B.V. Deposition of titanium nanolaminates for use in integrated circuit fabrication
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9799745B2 (en) * 2015-10-20 2017-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition methods and structures thereof
JP6538604B2 (ja) * 2016-03-30 2019-07-03 株式会社Kokusai Electric 半導体装置の製造方法および基板処理装置
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9620611B1 (en) 2016-06-17 2017-04-11 Acorn Technology, Inc. MIS contact structure with metal oxide conductor
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
WO2018094205A1 (en) 2016-11-18 2018-05-24 Acorn Technologies, Inc. Nanowire transistor with source and drain induced by electrical contacts with negative schottky barrier height
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US9997519B1 (en) 2017-05-03 2018-06-12 International Business Machines Corporation Dual channel structures with multiple threshold voltages
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US10910375B2 (en) * 2018-09-28 2021-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of fabrication thereof
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391510A (en) * 1992-02-28 1995-02-21 International Business Machines Corporation Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps
DE19535629C1 (de) * 1995-09-25 1996-09-12 Siemens Ag Verfahren zur Herstellung einer integrierten CMOS-Schaltung
US6084279A (en) * 1997-03-31 2000-07-04 Motorola Inc. Semiconductor device having a metal containing layer overlying a gate dielectric
US6043157A (en) * 1997-12-18 2000-03-28 Advanced Micro Devices Semiconductor device having dual gate electrode material and process of fabrication thereof
US6130123A (en) * 1998-06-30 2000-10-10 Intel Corporation Method for making a complementary metal gate electrode technology
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6066533A (en) * 1998-09-29 2000-05-23 Advanced Micro Devices, Inc. MOS transistor with dual metal gate structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355043C (zh) * 2001-11-26 2007-12-12 先进微装置公司 具有金属栅极电极的半导体装置及其制程
CN100419992C (zh) * 2002-08-26 2008-09-17 微米技术有限公司 具有铟掺杂子区域的栅隔离区的半导体结构
CN1311527C (zh) * 2003-05-06 2007-04-18 英特尔公司 一种用于制造具有金属栅电极的半导体器件的方法
CN100419999C (zh) * 2003-09-24 2008-09-17 国际商业机器公司 制造cmos场效应晶体管的方法和设备
CN100440439C (zh) * 2003-11-06 2008-12-03 英特尔公司 用于制造具有金属栅电极的半导体器件的方法
CN101151724B (zh) * 2003-11-28 2012-02-01 国际商业机器公司 金属碳化物栅极结构和制造方法
CN100490079C (zh) * 2004-01-09 2009-05-20 国际商业机器公司 具有金属栅电极和硅化物触点的fet栅极结构
CN102637741B (zh) * 2004-10-29 2015-09-16 英特尔公司 应用金属氧化物半导体工艺的共振隧穿器件
CN100428248C (zh) * 2004-12-24 2008-10-22 清华大学 Cmos功耗平衡延时不敏感加法器用的进位产生电路
CN101322240B (zh) * 2005-12-02 2011-12-14 国立大学法人东北大学 半导体装置
CN102203923B (zh) * 2008-11-05 2014-09-03 美光科技公司 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法
CN101930913B (zh) * 2009-06-26 2012-05-23 中芯国际集成电路制造(上海)有限公司 金属栅电极形成方法
WO2015014004A1 (zh) * 2013-08-01 2015-02-05 中国科学院微电子研究所 金属栅电极等效功函数调节方法
CN104347411A (zh) * 2013-08-01 2015-02-11 中国科学院微电子研究所 金属栅电极等效功函数调节方法
US9831089B2 (en) 2013-08-01 2017-11-28 Institute of Microelectronics, Chinese Academy of Sciences Method for adjusting effective work function of metal gate
CN106531618A (zh) * 2015-09-15 2017-03-22 联华电子股份有限公司 具有金属栅极结构的半导体元件的功函数调整方法
CN106531618B (zh) * 2015-09-15 2021-05-18 联华电子股份有限公司 具有金属栅极结构的半导体元件的功函数调整方法

Also Published As

Publication number Publication date
JP2000252371A (ja) 2000-09-14
TW444285B (en) 2001-07-01
EP1032033A2 (en) 2000-08-30
KR20000058131A (ko) 2000-09-25
US6291282B1 (en) 2001-09-18
SG77280A1 (en) 2000-12-19
EP1032033A3 (en) 2004-05-12

Similar Documents

Publication Publication Date Title
CN1266277A (zh) 形成cmos器件的双金属栅结构的方法
US5208472A (en) Double spacer salicide MOS device and method
CN100541799C (zh) 用于减小接触电阻的方法和结构
JP4002868B2 (ja) デュアルゲート構造およびデュアルゲート構造を有する集積回路の製造方法
US7528067B2 (en) MOSFET structure with multiple self-aligned silicide contacts
US6566701B2 (en) Encapsulated conductive pillar
US5924011A (en) Silicide process for mixed mode product
US5089432A (en) Polycide gate MOSFET process for integrated circuits
US20040070036A1 (en) ULSI MOS with high dielectric constant gate insulator
US6693335B2 (en) Semiconductor raised source-drain structure
DE102017212653A1 (de) IC-Struktur mit einem Grenzflächen-Liner und Verfahren zum Bilden selbiger
US20060278938A1 (en) Low-power multiple-channel fully depleted quantum well CMOSFETs
CN101488453B (zh) 用以制备具有短栅极的mosfet的结构和方法
US7060571B1 (en) Semiconductor device with metal gate and high-k tantalum oxide or tantalum oxynitride gate dielectric
US8053317B2 (en) Method and structure for improving uniformity of passive devices in metal gate technology
US6174794B1 (en) Method of making high performance MOSFET with polished gate and source/drain feature
US6794721B2 (en) Integration system via metal oxide conversion
US20230131403A1 (en) Integrated circuit structure with spacer sized for gate contact and methods to form same
US20090142915A1 (en) Gate structure and method of forming the same
US6969661B2 (en) Method for forming a localized region of a material difficult to etch
DE102022101533B4 (de) Poly - LeiterPolysilizium-Widerstand mit durchgehenden U-förmigen Polysilizium-Widerstandselementen und zugehöriges Verfahren
US20240072050A1 (en) Field-effect transistors with isolation pillars
US20240014264A1 (en) Single diffusion break
US20210210636A1 (en) FeFET OF 3D STRUCTURE FOR CAPACITANCE MATCHING
KR100228527B1 (ko) 반도체 장치의 캐패시터 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication