CN1180458C - 半导体器件中形成金属栅的方法 - Google Patents

半导体器件中形成金属栅的方法 Download PDF

Info

Publication number
CN1180458C
CN1180458C CNB011447869A CN01144786A CN1180458C CN 1180458 C CN1180458 C CN 1180458C CN B011447869 A CNB011447869 A CN B011447869A CN 01144786 A CN01144786 A CN 01144786A CN 1180458 C CN1180458 C CN 1180458C
Authority
CN
China
Prior art keywords
film
metal
group
gate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB011447869A
Other languages
English (en)
Other versions
CN1363949A (zh
Inventor
朴大奎
赵兴在
林宽容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cowenssen Wisdom N.B.868 company
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN1363949A publication Critical patent/CN1363949A/zh
Application granted granted Critical
Publication of CN1180458C publication Critical patent/CN1180458C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN

Abstract

一种形成金属栅的方法,它可阻止形成于该金属栅上的栅绝缘膜性能的降级。形成金属栅的方法包括提供一个具有一个或多个用于确定有效区域的沟状的器件隔离膜的硅基体;用热氧化工艺在硅基体表面上形成栅绝缘膜;继续在栅绝缘膜上形成金属阻挡膜和栅的金属膜;为栅的金属膜、金属阻挡膜和栅绝缘膜构图,其中金属阻挡膜和栅的金属膜的沉积通过原子层沉积(ALD)工艺或遥控等离子体化学汽相沉积(CVD)工艺来实施。

Description

半导体器件中形成金属栅的方法
技术领域
本发明的方法一般涉及一种半导体器件中形成金属栅的方法。公开的方法尤其涉及一种可阻止栅绝缘膜中栅氧化物完整性(GOI)性能降级的半导体器件中的金属栅的形成方法。
背景技术
氧化硅膜(SiO2)主要一直被用作MOSFET(金属氧化物半导体场效应晶体管)中的栅绝缘膜的材料,多晶硅膜一直被用作栅的材料是本领域熟知的。但是,随着半导体器件的集成度的提高,需要减小栅的线宽和栅绝缘膜的厚度。当氧化硅膜用作栅绝缘膜的材料时,如果栅绝缘膜的厚度太薄,由于直接穿通栅绝缘膜的隧道效应的增强而产生的漏电,使绝缘性能不稳定。
例如,当氧化硅膜被用作目前大量生产的DRAM(动态随机存取存储器)和逻辑器件的栅绝缘膜时,其用于70nm厚的器件时,希望其厚度在DRAM中为30-35,在逻辑器件中为13-15。由于多晶硅栅损耗效应(PDE)所增加的电容器元件增至3-8,但是减少厚度范围在15-30之间的栅氧化物膜占有的电测厚度(Teff)是困难的。
因此,作为一种克服上述问题的方法,人们一直努力用一种介电常数高的、比氧化硅膜的介电常数高的材料作为栅绝缘膜的材料。为了使多晶硅栅损耗效应降至最低,也努力用金属栅代替多晶硅栅。
当为金属栅时,作为金属阻挡膜的TiN或WN膜介于栅的金属膜和栅绝缘膜之间,用作蚀刻掩膜的坚固的掩膜置于栅金属膜上。
但是,根据常规技术在氧化硅栅绝缘膜上形成金属栅时,存在栅绝缘膜下述列各项性能降低的问题。
栅金属膜的沉积通常通过喷溅或化学气相沉积(CVD)来实现。但是,在硅栅绝缘膜上直接通过喷溅或CVD沉积栅的金属膜时,降低了栅绝缘膜的接口性能和绝缘性能。
图1A和1B给出了MOS电容器的电容(C)-电压(V)的曲线,该电容器是在根据常规技术用喷溅法形成的氧化硅栅绝缘膜上直接沉积TiN或WN膜作阻挡膜后,继续沉积钨(W)膜作为栅的金属膜而形成的。
如图所示,包括陆续在氧化硅栅绝缘膜上沉积金属阻挡膜(TiN或WN)和沉积钨膜栅的步骤的实施方式中,未进行随后的退火工艺,不重点考虑与电容-电压性能有关的沉积金属阻挡膜材料(TiN或WN)和喷溅方法(常规的IMP校准),由于过多的峰值约为1E12/eV-cm2的接口陷阱密度和滞后约为1E12/cm2的氧化物陷阱电荷,从而形成了高数量级的氧化物缺陷电荷。基于此,导致了栅本身绝缘性能的损失和与基体的接口的严重损坏。
同时,该损坏可通过高温退火工艺,如800℃下恢复至一定的程度,但是不能实现对损坏的栅绝缘膜的完全恢复。另外,高温退火工艺有缺点而且成本高,并且必须增加栅绝缘膜的电测厚度(Teff)以恢复一些损失的性能。
图2A至2C表明了TiCl4+NH3在650℃下以热沉积方法沉积的TiN金属栅中的电容(C)-电压(V)曲线图。
如图所示,沉积后MOS晶体管的性能相对好于用喷溅法沉积得到的晶体管的性能。但是,由于在随后的退火工艺后,栅绝缘膜中电测厚度(Teff)和氧化物陷阱电荷的增加,从而产生了栅氧化物完整性(GOI)性能的降级,即增加了滞后现象。尤其是,当制造MOS电容器/晶体管时,可产生严重的栅氧化物完整性(GOI)性能的降级。
发明内容
因此,公开的方法是解决上述问题的发明,公开的方法的一个目的是提供一种形成金属栅的方法,该金属栅可防止栅绝缘膜的GOI性能的降级。
为了达到上述目的,根据公开的方法,形成金属栅的方法包括一个提供硅基体的步骤,该基体具有沟状的器件隔离膜以确定有效的区域;用热氧化工艺在硅基体表面上形成栅绝缘膜;继续在栅绝缘膜上形成金属阻挡膜和栅的金属膜;为栅的金属膜、金属阻挡膜和栅绝缘膜构图,其中金属阻挡膜和栅的金属膜的沉积通过原子层沉积(ALD)工艺和/或遥控等离子体化学汽相沉积工艺来实施。
根据公开的方法,金属阻挡膜和栅的金属膜通过原子层沉积(ALD)工艺或遥控等离子体CVD工艺沉积。从而将在沉积膜的工艺过程中产生的栅绝缘膜的损坏降至最小。
结合下面的描述和附图,将对公开的方法的上述内容和其它的特征作更充分的解释。
附图说明
图1A和1B是表明根据常规技术,用喷溅法在氧化硅膜上直接沉积TiN或WN膜和钨(W)膜的电容(C)-电压(V)曲线图;
图2A至2C表明根据常规技术,TiCl4+NH3在650℃下以热沉积方法沉积的TiN金属栅中电容(C)-电压(V)的曲线图;和
图3A至3C是包括根据本发明的实施方式形成的金属栅的半导体器件的截面图。
具体实施方式
将通过优选的实施方式参考附图对公开的方法进行详细的描述,其中用同样的参考数字表示相同或相似的部件。
图3A至3C是包括根据本发明的一个实施方式形成的金属栅的半导体器件的截面图。
图3A中,提供了硅基体1。在硅基体1的特定区域上形成了沟状的器件隔离膜2以确定有效的区域。此时,器件隔离膜2可用常规的LOCOS(硅的局部氧化)工艺形成。通过热氧化工艺在硅基体1表面上形成的栅绝缘膜3是由氧化硅制成的厚度为10-40的膜。此时,优选热氧化工艺在650℃-900℃的炉中用湿法(H2/O2)或干法(O2)来实施。
同时,可形成除热氧化工艺形成的氧化硅膜外的Al2O3、Ta2O5、TiO2、ZrO2、HfO2、Zr-硅酸盐、Hf-硅酸盐、La2O3中的任何一种或多种高介电常数绝缘膜和三维混合的绝缘膜(ZrAlO,HfAlO、ZrSiO4和HfSiO4)。在沉积高介电常数绝缘膜之前,也可形成超薄(例如3-30)的氧化硅膜。另外,用高介电常数绝缘膜作栅绝缘膜时,高介电常数绝缘膜可在氧气、氮气或惰性气氛下采用10-300秒的快速热工艺,或10-100分钟的熔炉工艺而经受退火工艺,并且可经过一个UV-臭氧工艺。
另外,尽管图中未示出,但是在栅绝缘膜3形成之前,可形成沟状的电容器。此时,介电膜可以包括ON膜、Ta2O5膜、Al2O3膜、BST膜或SBT膜中的一种。
图3B中,在栅绝缘膜3上陆续沉积金属阻挡膜4和金属膜5。优选金属阻挡膜4和栅的金属膜5通过非高温热沉积的工艺来沉积,例如,原子层沉积(ALD)工艺或遥控等离子体化学汽相沉积(CVD)工艺沉积,因为该工艺不受金属渗透或掺杂的影响。
上述方法中,由于ALD工艺允许在150℃-350℃的温度范围内进行循环的配料和清洗,阻止了栅绝缘膜3和基体1之间的接口性能和栅绝缘膜3本身性能的降级。优选在50℃-550℃的温度范围内、在0.05托-3托的压力下用N2、NH3、ND3或其混合物作清洗前体的材料来实施ALD工艺。
由于遥控等离子体CVD工艺实施方式在远处形成等离子体来沉积薄膜,也可得到与ALD工艺相同的效果。在遥控等离子体CVD工艺的实施过程中,优选在2.0GHz-9GHz的频率下,用电子回旋共振(ECR)作等离子源,He、Ar、Kr、Xe或其混合物作等离子体激发气。另外,在遥控等离子体CVD工艺中,将金属源如钛引入室内在晶片周围喷溅,并且在等离子体周围激发N源,从而Ti和N可被引入涂覆于晶片表面。
同时,金属阻挡膜4可由选自由TiN、TiAlN、TaN、MoN、WN和它们的混合物组成的组中的一种化合物组形成。优选金属阻挡膜4的厚度在50-500的范围内。栅的金属膜5也可以是由W、Ta、Al、TiSix、CoSix和NiSix组成的组中的一种形成,其中X是0.1-2.9之间的整数,它也可形成多晶硅、氮化钨膜和钨膜的栈结构。优选栅的金属膜5的厚度是300-1500。坚固的掩膜6可由二氧化硅膜(SiO2)、氮化硅膜(Si3N4)或氮氧化硅膜(SiON)形成。坚固的掩膜6的厚度是300-2000。
上述内容中,当金属阻挡膜4例如TiN通过ALD工艺和/或遥控等离子体CVD工艺沉积时,Ti的来源可以包括TiCl4、TDEAT(四(二乙基氨基)钛)或TDMAT(四(二甲基氨基)钛),N的来源可以包括N2、NH3或ND3。该实施方式也包括沉积TiAlN作金属阻挡膜的步骤,Ti的来源可以包括TiCl4、TDEAT(四(二乙基氨基)钛)或TDMAT(四(二甲基氨基)钛),N的来源可以包括N2、NH3或ND3,Al的来源可以包括AlCl3或TMA[Al(CH3)3]。另外,该实施方式包括沉积TaN作金属阻挡膜的步骤,Ta的来源可以包括TaCl4或叔丁醇钽,N的来源可以包括N2、NH3或ND3。该实施方式也可包括沉积MoN作金属阻挡膜的步骤,Mo的来源可以包括MoCl4、MoF6或叔丁醇钼,N的来源可以包括N2、NH3或ND3。另外,该实施方式包括沉积WN作金属阻挡膜的步骤,W的来源可以包括WF6或WCl4N的来源可以包括N2、NH3或ND3
图3C中,坚固的掩膜6的构图可以用例如通常的光刻法工艺。然后,利用坚固的掩膜6作蚀刻膜,用蚀刻工艺陆续将栅的金属膜5、阻挡膜4和栅绝缘膜3蚀刻,从而形成了金属栅10。
由于栅的金属膜5包括阻挡金属膜4是通过ALD工艺或遥控等离子体CVD工艺沉积的,因此用公开的方法形成的金属栅10可以阻止氧化硅栅绝缘膜3的GOI性能的降级。
同时,上述的实施方式也解释了用常规的栅形成工艺形成栅的方法,即栅绝缘膜和栅导电膜先沉积后构图的工艺。但是,公开的方法也适用于金银镶花工艺,其中通过形成并且去除牺牲栅确定栅形成区域后,在栅形成区域形成了金属栅。尤其是,如果公开的方法适用于金银镶花工艺的栅形成工艺,可得到更改善的效果。
正如从上述内容可理解的,公开的方法形成金属栅,其中阻挡金属膜和栅的金属膜是通过ALD工艺或遥控等离子体CVD工艺沉积的。从而公开的方法形成可以阻止栅绝缘膜性能的降级。因此,公开的方法不仅可以改善金属栅的性能,而且可以改善器件的性能。另外,由于ALD工艺和遥控等离子体CVD工艺沉积有好的台阶覆盖,工艺本身有优势,并且可以很有利的应用于高速/高密度器件的制造中。
参考特定的实施方式,对与特定的应用有关的公开的方法进行了描述。那些具有本领域的普通技术和可得到公开的方法的教导的人员将意识到在其范围内的其它的修正和应用。
因此,欲用所附的权利要求来覆盖在公开的方法的范围内的任何的和所有的这种应用、修正和实施方式。

Claims (12)

1.一种半导体器件中形成金属栅的方法,它包括的步骤为:
提供一个硅基体,该基体具有一个或多个用于确定有效区域的沟状的器件隔离膜;
用热氧化工艺在所述的硅基体表面上形成栅绝缘膜;
继续在所述的栅绝缘膜上形成金属阻挡膜和栅的金属膜;和
为所述的栅的金属膜、所述的金属阻挡膜和所述的栅绝缘膜构图,
其中所述的金属阻挡膜和所述的栅的金属膜的沉积通过选自由原子层沉积工艺和遥控等离子体化学汽相沉积工艺组成的组中的工艺来实施。
2.根据权利要求1的半导体器件中形成金属栅的方法,其中所述的热氧化工艺在温度范围为650℃-900℃下用湿法(H2/O2)或干法(O2)实施。
3.根据权利要求1的半导体器件中形成金属栅的方法,其中所述的金属阻挡膜选自由TiN、TiAlN、TaN、MoN和WN组成的组中。
4.根据权利要求1的半导体器件中形成金属栅的方法,其中所述的ALD工艺在50℃-550℃的温度范围内、在0.05托-3托的压力下、用选自由N2、NH3和ND3组成的组中的一种化合物作清洗前体的材料来实施。
5.根据权利要求1的半导体器件中形成金属栅的方法,其中遥控等离子体化学气相沉积工艺是在2.0GHz-9GHz的频率范围下,用电子回旋共振作等离子源,选自由He、Ar、Kr和Xe组成的组中的等离子体激发气来实施。
6.根据权利要求3的半导体器件中形成金属栅的方法,其中金属阻挡膜是TiN,其中Ti来源的提供选自由TiCl4、四(二乙基氨基)钛和四(二甲基氨基)钛组成的组中,N来源的提供选自由N2、NH3和ND3组成的组中。
7.根据权利要求3的半导体器件中形成金属栅的方法,其中金属阻挡膜是TiAlN,其中Ti来源的提供选自由TiCl4、四(二乙基氨基)钛和四(二甲基氨基)钛组成的组中;Al来源的提供选自由AlCl3和Al(CH3)3组成的组中;N来源的提供选自由N2、NH3、和ND3组成的组中。
8.根据权利要求3的半导体器件中形成金属栅的方法,其中金属阻挡膜是TaN,其中Ta来源的提供选自由TaCl4和叔丁醇钽组成的组中;N来源的提供选自由N2、NH3和ND3组成的组中。
9.根据权利要求3的半导体器件中形成金属栅的方法,其中金属阻挡膜是MoN,其中Mo来源的提供选自由MoCl4、MoF6和叔丁醇钼组成的组中;N来源的提供选自由N2、NH3和ND3组成的组中。
10.根据权利要求3的半导体器件中形成金属栅的方法,其中金属阻挡膜是WN,其中W来源的提供由WF6和WCl4组成的组中;N来源的提供选自由N2、NH3和ND3组成的组中。
11.根据权利要求1的半导体器件中形成金属栅的方法,其中所述的栅的金属膜选自由W、Ta、Al、TiSiX、CoSiX和NiSiX组成的组中,其中X是0.1-2.9之间的整数。
12.根据权利要求1的半导体器件中形成金属栅的方法,其中所述的栅的金属膜有多晶硅膜、氮化钨膜和钨膜的栈结构。
CNB011447869A 2000-12-29 2001-12-28 半导体器件中形成金属栅的方法 Expired - Lifetime CN1180458C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR85582/2000 2000-12-29
KR1020000085582A KR20020056260A (ko) 2000-12-29 2000-12-29 반도체 소자의 금속 게이트 형성방법
KR85582/00 2000-12-29

Publications (2)

Publication Number Publication Date
CN1363949A CN1363949A (zh) 2002-08-14
CN1180458C true CN1180458C (zh) 2004-12-15

Family

ID=19703940

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011447869A Expired - Lifetime CN1180458C (zh) 2000-12-29 2001-12-28 半导体器件中形成金属栅的方法

Country Status (5)

Country Link
US (1) US7157359B2 (zh)
JP (1) JP2002237469A (zh)
KR (1) KR20020056260A (zh)
CN (1) CN1180458C (zh)
TW (1) TW516131B (zh)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974766B1 (en) 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US6936538B2 (en) * 2001-07-16 2005-08-30 Applied Materials, Inc. Method and apparatus for depositing tungsten after surface treatment to improve film characteristics
US7101795B1 (en) 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US6511911B1 (en) * 2001-04-03 2003-01-28 Advanced Micro Devices, Inc. Metal gate stack with etch stop layer
US6596643B2 (en) * 2001-05-07 2003-07-22 Applied Materials, Inc. CVD TiSiN barrier for copper integration
US6849545B2 (en) * 2001-06-20 2005-02-01 Applied Materials, Inc. System and method to form a composite film stack utilizing sequential deposition techniques
JP2003023152A (ja) * 2001-07-10 2003-01-24 Sony Corp Mis型トランジスタ及びその製造方法
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
TW581822B (en) 2001-07-16 2004-04-01 Applied Materials Inc Formation of composite tungsten films
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US7049226B2 (en) * 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
TW589684B (en) * 2001-10-10 2004-06-01 Applied Materials Inc Method for depositing refractory metal layers employing sequential deposition techniques
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US7081271B2 (en) 2001-12-07 2006-07-25 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6767795B2 (en) * 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
WO2003065424A2 (en) 2002-01-25 2003-08-07 Applied Materials, Inc. Apparatus for cyclical deposition of thin films
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6893984B2 (en) * 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6972267B2 (en) 2002-03-04 2005-12-06 Applied Materials, Inc. Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
JP2003282873A (ja) * 2002-03-22 2003-10-03 Sony Corp 半導体装置およびその製造方法
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7205218B2 (en) 2002-06-05 2007-04-17 Micron Technology, Inc. Method including forming gate dielectrics having multiple lanthanide oxide layers
JP4643884B2 (ja) * 2002-06-27 2011-03-02 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7186385B2 (en) 2002-07-17 2007-03-06 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
US6921702B2 (en) 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US7199023B2 (en) * 2002-08-28 2007-04-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed
US7101813B2 (en) 2002-12-04 2006-09-05 Micron Technology Inc. Atomic layer deposited Zr-Sn-Ti-O films
US7262133B2 (en) * 2003-01-07 2007-08-28 Applied Materials, Inc. Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7019351B2 (en) * 2003-03-12 2006-03-28 Micron Technology, Inc. Transistor devices, and methods of forming transistor devices and circuit devices
US7316950B2 (en) * 2003-04-22 2008-01-08 National University Of Singapore Method of fabricating a CMOS device with dual metal gate electrodes
US7183186B2 (en) 2003-04-22 2007-02-27 Micro Technology, Inc. Atomic layer deposited ZrTiO4 films
US7049192B2 (en) * 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
KR100543207B1 (ko) * 2003-06-30 2006-01-20 주식회사 하이닉스반도체 하드마스크를 이용한 반도체 소자의 게이트전극 제조 방법
US6927136B2 (en) * 2003-08-25 2005-08-09 Macronix International Co., Ltd. Non-volatile memory cell having metal nano-particles for trapping charges and fabrication thereof
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8399934B2 (en) * 2004-12-20 2013-03-19 Infineon Technologies Ag Transistor device
KR100597596B1 (ko) * 2004-06-30 2006-07-06 주식회사 하이닉스반도체 반도체 메모리장치의 게이트전극
KR100741983B1 (ko) * 2004-07-05 2007-07-23 삼성전자주식회사 고유전율의 게이트 절연막을 갖는 반도체 장치 및 그 제조방법
US7241686B2 (en) * 2004-07-20 2007-07-10 Applied Materials, Inc. Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA
US7601649B2 (en) 2004-08-02 2009-10-13 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7081421B2 (en) 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7494939B2 (en) 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
JP4591917B2 (ja) * 2004-09-30 2010-12-01 株式会社トリケミカル研究所 導電性モリブデンナイトライド膜形成方法
JP4592373B2 (ja) * 2004-09-30 2010-12-01 株式会社トリケミカル研究所 導電性モリブデンナイトライドゲート電極膜の形成方法
US20060091483A1 (en) * 2004-11-02 2006-05-04 Doczy Mark L Method for making a semiconductor device with a high-k gate dielectric layer and a silicide gate electrode
KR100575887B1 (ko) * 2004-11-08 2006-05-03 주식회사 하이닉스반도체 반도체 소자의 캐패시터 형성방법
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7560395B2 (en) 2005-01-05 2009-07-14 Micron Technology, Inc. Atomic layer deposited hafnium tantalum oxide dielectrics
US7109079B2 (en) * 2005-01-26 2006-09-19 Freescale Semiconductor, Inc. Metal gate transistor CMOS process and method for making
US7541626B2 (en) * 2005-03-28 2009-06-02 Massachusetts Institute Of Technology High K-gate oxide TFTs built on transparent glass or transparent flexible polymer substrate
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US7390756B2 (en) 2005-04-28 2008-06-24 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7317229B2 (en) * 2005-07-20 2008-01-08 Applied Materials, Inc. Gate electrode structures and methods of manufacture
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
KR100655658B1 (ko) * 2005-07-26 2006-12-08 삼성전자주식회사 게이트 전극 구조물과 그 제조 방법 및 이를 갖는 반도체트랜지스터와 그 제조 방법
US8110469B2 (en) 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
TWI332532B (en) 2005-11-04 2010-11-01 Applied Materials Inc Apparatus and process for plasma-enhanced atomic layer deposition
JP2007158065A (ja) * 2005-12-06 2007-06-21 Nec Electronics Corp 半導体装置の製造方法および半導体装置
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US20080050879A1 (en) * 2006-08-23 2008-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of forming metal-containing gate structures
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US7605030B2 (en) 2006-08-31 2009-10-20 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US7521379B2 (en) 2006-10-09 2009-04-21 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
US7759237B2 (en) 2007-06-28 2010-07-20 Micron Technology, Inc. Method of forming lutetium and lanthanum dielectric structures
US7678298B2 (en) 2007-09-25 2010-03-16 Applied Materials, Inc. Tantalum carbide nitride materials by vapor deposition processes
US8017183B2 (en) * 2007-09-26 2011-09-13 Eastman Kodak Company Organosiloxane materials for selective area deposition of inorganic materials
US7824743B2 (en) 2007-09-28 2010-11-02 Applied Materials, Inc. Deposition processes for titanium nitride barrier and aluminum
US7911008B2 (en) * 2007-10-25 2011-03-22 International Business Machines Corporation SRAM cell having a rectangular combined active area for planar pass gate and planar pull-down NFETS
US7741217B2 (en) * 2007-10-25 2010-06-22 International Business Machines Corporation Dual workfunction silicide diode
US7732872B2 (en) * 2007-10-25 2010-06-08 International Business Machines Corporation Integration scheme for multiple metal gate work function structures
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US8146896B2 (en) 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
CN101740369B (zh) * 2008-11-19 2011-12-07 中国科学院微电子研究所 一种制备金属性金属氮化物薄膜的方法
CN102315117B (zh) * 2010-06-30 2013-05-22 中国科学院微电子研究所 一种Mo基/TaN金属栅叠层结构的刻蚀方法
CN102956450B (zh) * 2011-08-16 2015-03-11 中芯国际集成电路制造(北京)有限公司 一种制作半导体器件的方法
KR20140003154A (ko) * 2012-06-29 2014-01-09 에스케이하이닉스 주식회사 반도체 장치 제조 방법
CN102842620A (zh) * 2012-09-11 2012-12-26 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板、显示装置
JP6176776B2 (ja) * 2013-03-22 2017-08-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、基板処理システムおよびプログラム
KR20210055148A (ko) * 2019-11-06 2021-05-17 삼성전자주식회사 반도체 장치 및 그 제조방법
CN113690178A (zh) * 2021-08-23 2021-11-23 长江先进存储产业创新中心有限责任公司 金属导电结构的制造方法
CN116454132A (zh) * 2022-01-06 2023-07-18 长鑫存储技术有限公司 半导体结构及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065852A (ja) 1992-06-23 1994-01-14 Oki Electric Ind Co Ltd Mosfet及びその製造方法
JP3336747B2 (ja) * 1994-06-09 2002-10-21 ソニー株式会社 絶縁膜の形成方法、並びに半導体装置の作製方法及び半導体装置
JPH09143699A (ja) 1995-11-24 1997-06-03 Nissin Electric Co Ltd 基材処理方法およびその装置
US5923056A (en) * 1996-10-10 1999-07-13 Lucent Technologies Inc. Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials
US6197683B1 (en) 1997-09-29 2001-03-06 Samsung Electronics Co., Ltd. Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same
US5907780A (en) * 1998-06-17 1999-05-25 Advanced Micro Devices, Inc. Incorporating silicon atoms into a metal oxide gate dielectric using gas cluster ion beam implantation
KR100275738B1 (ko) 1998-08-07 2000-12-15 윤종용 원자층 증착법을 이용한 박막 제조방법
KR20000015134A (ko) * 1998-08-27 2000-03-15 윤종용 질화티탄 전극층을 갖는 게이트 전극 및 그제조방법
JP2000091269A (ja) 1998-09-10 2000-03-31 Fujitsu Ltd 半導体装置の製造方法
JP3945043B2 (ja) 1998-10-12 2007-07-18 ソニー株式会社 金属窒化物膜の形成方法および電子装置の製造方法

Also Published As

Publication number Publication date
JP2002237469A (ja) 2002-08-23
US7157359B2 (en) 2007-01-02
CN1363949A (zh) 2002-08-14
US20020086507A1 (en) 2002-07-04
TW516131B (en) 2003-01-01
KR20020056260A (ko) 2002-07-10

Similar Documents

Publication Publication Date Title
CN1180458C (zh) 半导体器件中形成金属栅的方法
JP3912990B2 (ja) 集積回路構造およびその製造方法
US6297539B1 (en) Doped zirconia, or zirconia-like, dielectric film transistor structure and deposition method for same
US6486080B2 (en) Method to form zirconium oxide and hafnium oxide for high dielectric constant materials
US20020001906A1 (en) Method of manufacturing a gate in a semiconductor device
US20060151822A1 (en) DRAM with high K dielectric storage capacitor and method of making the same
US6614082B1 (en) Fabrication of semiconductor devices with transition metal boride films as diffusion barriers
US7564114B2 (en) Semiconductor devices and methods of manufacture thereof
JP2002329847A (ja) high−k絶縁膜を備えた単一トランジスタ強誘電体トランジスタ構造、およびその製造方法
US20060141729A1 (en) System and method for suppressing oxide formation
US6573197B2 (en) Thermally stable poly-Si/high dielectric constant material interfaces
US7112486B2 (en) Method for fabricating semiconductor device by using radical oxidation
US6436840B1 (en) Metal gate with CVD amorphous silicon layer and a barrier layer for CMOS devices and method of making with a replacement gate process
KR100418580B1 (ko) 반도체 소자의 캐패시터 제조방법
JP4063570B2 (ja) 半導体素子のキャパシタ形成方法
KR100826978B1 (ko) 반도체 소자의 캐패시터 형성방법
JP4087998B2 (ja) 半導体装置及びその製造方法
JP2000307069A (ja) 半導体装置の製造方法
KR100382611B1 (ko) 고집적 디램용 셀 커패시터의 제조방법
KR100351449B1 (ko) 반도체장치의 게이트전극 형성방법
KR100384848B1 (ko) 반도체소자 제조 방법
KR100593131B1 (ko) 반도체 소자의 제조 방법
CN1716541A (zh) 半导体存储器装置的栅结构
KR20010008412A (ko) 반도체장치의 커패시터 제조방법
KR20030056448A (ko) 반도체 소자의 커패시터 제조방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: 658868N.B. INC.

Free format text: FORMER OWNER: HAERYOKSA SEMICONDUCTOR HONG KONG CO., LTD.

Effective date: 20120607

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120607

Address after: Saint John Canada

Patentee after: 658868N.B. company

Address before: Gyeonggi Do, South Korea

Patentee before: Haeryoksa Semiconductor Hong Kong Co., Ltd.

C56 Change in the name or address of the patentee

Owner name: KAOWENSEN INTELLECTUAL PROPERTY N.B.868 COMPANY N.

Free format text: FORMER NAME: 658868N.B. INC.

CP01 Change in the name or title of a patent holder

Address after: Saint John Canada

Patentee after: Cowenssen Wisdom N.B.868 company

Address before: Saint John Canada

Patentee before: 658868N.B. company

CX01 Expiry of patent term

Granted publication date: 20041215

CX01 Expiry of patent term