CN1172357C - 近环绕栅极及制造具有该栅极的硅半导体器件的方法 - Google Patents

近环绕栅极及制造具有该栅极的硅半导体器件的方法 Download PDF

Info

Publication number
CN1172357C
CN1172357C CNB021017263A CN02101726A CN1172357C CN 1172357 C CN1172357 C CN 1172357C CN B021017263 A CNB021017263 A CN B021017263A CN 02101726 A CN02101726 A CN 02101726A CN 1172357 C CN1172357 C CN 1172357C
Authority
CN
China
Prior art keywords
layer
grid
semiconductor layer
semiconductor
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021017263A
Other languages
English (en)
Other versions
CN1368756A (zh
Inventor
卡罗斯
・柯林吉
金皮尔·柯林吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN1368756A publication Critical patent/CN1368756A/zh
Application granted granted Critical
Publication of CN1172357C publication Critical patent/CN1172357C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners

Abstract

本发明揭示一种制造具有近环绕(quasi-surrounding)栅极的绝缘体上有硅(SOI)的半导体器件的方法。根据本发明的方法,可得到一种MOSFET半导体器件,其栅极电极几乎包围整个沟道区域,而达到体积反转(volume-inversion)的效果,可大幅增加该半导体器件的单位电流,亦可控制短沟道效应(SCE)的发生,而减少亚阈值漏电(sub-thresholdleakage)。此外,本发明的方法可以传统方式制造不同栅极长度的器件。

Description

近环绕栅极及制造具有该栅极的硅半导体器件的方法
技术领域
本发明涉及一种绝缘体上有硅(SOI)半导体器件的结构及其制造方法,特别涉及一种具有近环绕栅极的硅(SOI)半导体器件的结构及其制造方法。
背景技术
绝缘体上有硅的技术是与在一层覆盖于一绝缘层上的半导体材料中形成晶体管有关,其在集成电路的领域越来越重要。在一薄的SOI层上制作集成电路元件,相对于在一较厚的硅结构中制作相同的IC元件,可得到较低的寄生电容与较大的沟道电流,因而加快MOS整合电路的操作速度。再者,制作于SOI结构的硅膜中的场效电晶体,例如金氧半场效电晶体(MOSFET),比制作于传统硅基材上的MOSFET具有更多优点,包括对短沟道效应的电阻、较陡峭的亚阈值(subthreshold)斜率、增加的电流驱动、较高的封装密度、减小的寄生电容以及简单的制程步骤等。此外,由于SOI结构有效地减少寄生元件,同时增加结构对接面崩溃的容忍度,因此SOI技术适用于高效能及高密度的集成电路。
绝缘体上有硅的技术与在一层覆盖于一绝缘层上的半导体材料中形成晶体管有关,其在集成电路的领域越来越重要。在一薄的硅层上制作集成电路组件,相对于在一较厚的硅结构中制作相同的IC组件,可得到较低的寄生电容与较大的沟道电流,因而加快MOS整合电路的操作速度。再者,制作于SOI结构的硅膜中的场效晶体管,例如金氧半场效晶体管(MOSFET),比制作于传统硅基材上的MOSFET具有更多优点,包括对短沟道效应的电阻、较陡峭的亚阈值(subthreshold)斜率、增加的电流驱动、较高的封装密度、减小的寄生电容以及简单的制程步骤等。此外,由于SOI结构有效地减少寄生组件,同时增加结构对接面崩溃的容忍度,因此SOI技术适用于高效能及高密度的集成电路。
上述MOSFET的操作是经由在源极与漏极之间的沟道区域通过电流。该沟道区域的导电性是藉由施加电压于位于沟道表面上方的导电栅极而控制。为了增加MOSFET的性能,许多研究皆朝向改良SOI MOSFET的驱动电流速度发展,以谋求半导体器件的稳定性,同时减低电力消耗。
目前一般MOS晶体管的驱动电流是如图1所示的表面反转层(surface-inversion layer)14。其中,当一电压施加于栅极13时,形成于沟道尾端的源极11与漏极12之间的表面反转层14是做为驱动电流的路径。然而,在该表面反转层仅能提供有限的电流的情形下,必须制造出能够预防短沟道效应、漏极导致表面电位降低(drain-induced barrierlowering;DIBL)以及次门槛斜率的降低的SOI MOSFET。
发明内容
有鉴于此,本发明的目的在于提供一种近环绕栅极,以及制作具有该近环绕栅极结构的绝缘体上有硅的半导体器件的方法,其中该环绕栅极结构是体积反转(volume-inversion),所谓体积反转是指不仅在半导体的表面的表层沟道(surface channel)有反转,在半导体层容积内以及半导体层两侧皆有反转。藉由该环绕栅极结构,可大幅增加沟道电流,进而提升半导体组件的操作速度,并能达到预防短沟道效应、漏极感应阻障降低以及次门槛斜率的降低的效果。
此外,本发明的新颖的近环绕栅极结构SOI半导体器件可使用现有的SOI芯片以及制程。而本发明的具有近环绕栅极结构的MOSFEET可结合传统MOS制程与已广为接受的SOI技术而制造的。因此本发明的具有近环绕栅极的半导体器件可以现有的整体(bulk)或SOI MOSFET技术,而不需额外或复杂的制程。
根据本发明的制造具有近环绕栅极结构的半导体结构的方法,其包括下列步骤:(a)在一半导体基底上经由第一绝缘层形成一半导体层;(b)在该半导体层上形成第一氧化层;(c)在该第一氧化层上形成第一牺牲氮化物层;(d)以微影技术将该第一牺牲氮化物层、第一氧化层、以及该半导体层图案化而形成岛状或长条状;(e)在该岛状或长条状的半导体层周围形成第二氧化层;(f)剥离该第一牺牲氮化物层;(g)沉积第二牺牲氮化物层;(h)以该第二牺牲氮化物层为掩模,以一既定距离蚀刻至该第1绝缘层,并蚀刻该第二氧化层;(I)在该半导体层周围形成绝缘材料;(j)。以该第二牺牲氮化物层为掩模,而沉积多晶硅;(k)移除该第2牺牲氮化物层而形成一栅极;以及(l)以该栅极为掩模在该半导体层植入与该半导体基底相反导电性的掺杂离子而形成源/漏极区。
本发明提供一种近环绕的栅极结构,该结构主要具有第一绝缘层;位于该第一绝缘层上的亚微米厚度(submicron-thick)的半导体层,其中该半导体层具有通常是内部的主体沟道区域(bulk channel region);环绕该半导体层的栅极绝缘层,以及几乎整个围绕该栅极绝缘层的栅极,其中该栅极是嵌入于该第一绝缘层。
本发明提供另一种近环绕的栅极结构,该结构主要具有第一绝缘层;位于该第一绝缘层上的亚微米厚度的半导体层,其中该半导体层具有通常是内部的主体沟道区域;环绕该半导体层的栅极绝缘层,以及围绕该栅极绝缘层的栅极,其中该栅极是位于该第一绝缘层的表面上。
根据本发明的制造具有近环绕栅极结构的半导体结构的方法,该方法可以一个SOI结构或一个半导体基底开始,于该半导体基底上经由第一绝缘层形成半导体层,再依序形成第一氧化层以及第一牺牲氮化物层。接着,藉由微影技术将上述半导体层、第一氧化层以及第一牺牲氮化物层形成岛状或长条状。
接着,在该半导体层周围形成第二氧化层而使该半导体层的角落圆滑,藉此可改善栅极绝缘崩溃特性(gate insulator breakdowncharacteristics),并可避免经由栅极绝缘的电场强化沟道(field-enhanced tunneling through the gate dielectric)。上述形成氧化层的步骤可以一般方法进行,例如沉积或者热氧化。
然后,剥离该第一牺牲氮化层,再形成一第二牺牲氮化层并图案化,以该第二牺牲氮化物层为掩模以既定距离蚀刻第一绝缘层,该既定距离的较佳范围为10-100nm。然而,该既定距离并无特别限制,亦可为零,也就是说仅蚀刻至第一绝缘层表面为止,如此最后就能形成另一种近环绕栅极结构。此时,上述用来圆滑半导体层角落的氧化层亦被蚀刻移除。同样的,本发明的剥离或蚀刻方法并无特别限制,可使用一般剥离/蚀刻方法。
接着,在该半导体周围形成绝缘材料层,该绝缘材料为选自二氧化硅、氮化硅、氧氮化硅以及高介电常数(dielectric constant;K)的绝缘材料等。然后沉积栅极材料,例如多晶硅。该栅极材料并不限于多晶硅,任何传统制程中所使用的栅极材料皆可。其次,可使用一平坦化技术,例如但不限于化学机械研磨(CMP)或有机材料沉积或是反应离子蚀刻(RIE),来平坦化栅极材料表面。
此时,因为整个器件的微小尺寸,从该栅极的电场线将结束于该器件的后部,因而可做为一个实质上的后栅极(back gate)。接着再移除第二牺牲氮化层。
最后,以一般制作MOSFET的方法形成源/漏极区而成。
在本发明的近环绕栅极结构中,该半导体层的厚度较佳为<200nm。
本发明的近环绕栅极是形成于一SOI结构上,较佳是在一埋藏有氧化层的整体(bulk)半导体基底上。根据本发明所得的MOSFET可避免短沟道效应并可提供比习知MOSFET更佳的驱动电流。
附图说明
以下,就图式说明本发明的具有近环绕闸极结构的SOI MOSFET器件的实施例。
图1显示传统的表面反转的SOI MOSFET;
图2显示本发明实施例的近环绕栅极的结构;
图3显示根据本发明实施例的另一近环绕栅极结构;
图4至图10显示本发明的实施例中,制作具有近环绕栅极结构的SOIMOSFET的剖面图。
图号说明:
半导体基底-45;
绝缘层-21、31、41;
半导体层-22、32、42;
栅极绝缘层-23、33;
栅极-24、34;
第一氧化层-43;
第二氧化层-43α;
第一牺牲氮化层-44;
第二牺牲氮化层-71、72;
既定距离-73;
绝缘材料-81;
多晶硅-91。
具体实施方式
请参阅图4至图10,其显示根据本发明的制作具有近环绕栅极结构的SOI MOSFET半导体器件的方法制作N沟道器件的实施例,不过只要在植入对应的离子时,适当地改变掺杂的极性或导电性,相同的原理也可用于制作P沟道器件。
首先,请参阅图4与图5,在一例如是P型的半导体基底45上经由第一绝缘层41(SiO2)形成半导体层42,在该半导体层42上再依序形成第一氧化层43以及第一牺牲氮化层44(Si2N4)。之后以微影技术将该半导体层42、该第一氧化层43及该第一牺牲氮化层44图案化而使其变成长条状。
接着,请参阅图6,在该半导体层42周围形成第二氧化层43α,使得该半导体层42的角落圆滑。然后请参阅图7,先剥离该第一牺牲氮化层44,之后形成第二牺牲氮化层71、72,并将其图案化。接着,使用图案化后的该第二牺牲氮化层71、72为掩模,以既定距离73蚀刻至该第一绝缘层41中,该既定距离73可以为0,但最好是10-110nm。此时,第二氧化层43α亦被蚀刻移除,而使该半导体层42的角落圆滑。
其次,请参阅图8,在该半导体层42周围以一绝缘材料氧化硅形成绝缘材料81。之后请参阅图9,再沉积多晶硅91而做为栅极材料,并以CMP(化学机械研磨法)将多晶硅91表面平坦化。
请参照图10,此时,使用适当的蚀刻技术将第二牺牲氮化层71、72移除,再以当作是栅极电极的多晶硅91为掩模,于半导体层42中形成源/漏极区,其形成方法例如是采用离子植入的技术,还有使用的掺杂离子可以是p型或n型的离子,其中p型离子例如是硼,n型离子例如是磷或砷。也就是说,植入该半导体层42的掺杂离子的电性必须是相反于该半导体基底45的电性。
根据上述制造方法,就能够制造出本发明的近环绕的栅极结构。图2是显示本发明的一种近环绕的栅极结构,该结构主要具有第一绝缘层21;位于该第一绝缘层21上的亚微米厚度(submicron-thick)的半导体层22,其中该半导体层22具有通常是内部的主体沟道区域(bulk channel region);环绕该半导体层22的栅极绝缘层23,以及几乎整个围绕该栅极绝缘层23的栅极24,其中该栅极24是嵌入于该第一绝缘层21。
这里要说明的是,若将图6中的该既定距离73设定为0的话,就能够形成如图3所显示的本发明的另一种近环绕的栅极结构。该结构主要具有第一绝缘层31;位于该第一绝缘层31上的亚微米厚度的半导体层32,其中该半导体层32具有通常是内部的主体沟道区域;环绕该半导体层32的栅极绝缘层33,以及围绕该栅极绝缘层33的栅极34,其中该栅极34是位于该第一绝缘层31的表面上。图2所示的本发明的近环绕栅极结构,其中栅极电极23几乎整个围绕沟道区域,而该沟道区域明显地大于在半导体表面具有表面反转的熟知晶体管,因此本发明的半导体器件可提供的驱动电流的确大幅增加。藉由本发明的近环绕栅极结构,可避免从栅极电极发出的电场现在沟道区域下方终止,而减少短沟道效应。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,可作适当的更改,因此本发明的保护范围以权利要求所界定的保护范围为准。

Claims (5)

1.一种制作具有近环绕栅极的硅半导体器件的方法,该方法包括下列步骤:
(a).在一半导体基底上经由第一绝缘层形成一半导体层;
(b).在该半导体层上形成第一氧化层;
(c).在该第一氧化层上形成第一牺牲氮化物层;
(d).以微影技术将该第一牺牲氮化物层、第一氧化层、以及该半导体层图案化而形成岛状或长条状;
(e).在该岛状或长条状的半导体层周围形成第二氧化层;
(f).剥离该第一牺牲氮化物层;
(g).沉积第二牺牲氮化物层;
(h).以该第二牺牲氮化物层为掩模,以一既定距离蚀刻至该第一绝缘层,并蚀刻该第二氧化层;
(I).在该半导体层周围形成绝缘材料;
(j).以该第二牺牲氮化物层为掩模,而沉积多晶硅;
(k).移除该第二牺牲氮化物层而形成一栅极;以及
(l).以该栅极为掩模在该半导体层植入与该半导体基底相反导电性的掺杂离子而形成源/漏极区。
2.根据权利要求1所述的方法,其中该第一绝缘层是SiO2层。
3.根据权利要求1所述的方法,其中该既定距离是0或10-110nm。
4.根据权利要求1所述的方法,其中步骤(1)还包括以离子植入法形成源/漏极延伸区。
5.一种近环绕的栅极结构,其包括:
第一绝缘层;
半导体层,位于该第一绝缘层上,且该半导体层图案化为一岛状或长条状;
栅极绝缘层,围绕该岛状或长条状的半导体层;以及
栅极,包围该栅极绝缘层并延伸至该第一绝缘层。
CNB021017263A 2001-01-17 2002-01-14 近环绕栅极及制造具有该栅极的硅半导体器件的方法 Expired - Lifetime CN1172357C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/761,889 US6359311B1 (en) 2001-01-17 2001-01-17 Quasi-surrounding gate and a method of fabricating a silicon-on-insulator semiconductor device with the same
US09/761,889 2001-01-17

Publications (2)

Publication Number Publication Date
CN1368756A CN1368756A (zh) 2002-09-11
CN1172357C true CN1172357C (zh) 2004-10-20

Family

ID=25063519

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021017263A Expired - Lifetime CN1172357C (zh) 2001-01-17 2002-01-14 近环绕栅极及制造具有该栅极的硅半导体器件的方法

Country Status (3)

Country Link
US (1) US6359311B1 (zh)
CN (1) CN1172357C (zh)
TW (1) TW487977B (zh)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW502453B (en) * 2001-09-06 2002-09-11 Winbond Electronics Corp MOSFET and the manufacturing method thereof
US6661044B2 (en) * 2001-10-22 2003-12-09 Winbond Electronics Corp. Method of manufacturing MOSEFT and structure thereof
US8222680B2 (en) * 2002-10-22 2012-07-17 Advanced Micro Devices, Inc. Double and triple gate MOSFET devices and methods for making same
US7148526B1 (en) 2003-01-23 2006-12-12 Advanced Micro Devices, Inc. Germanium MOSFET devices and methods for making same
US7259425B2 (en) * 2003-01-23 2007-08-21 Advanced Micro Devices, Inc. Tri-gate and gate around MOSFET devices and methods for making same
US6934181B2 (en) * 2003-02-06 2005-08-23 International Business Machines Corporation Reducing sub-threshold leakage in a memory array
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6909151B2 (en) * 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
KR100973092B1 (ko) 2003-07-21 2010-07-29 매그나칩 반도체 유한회사 실리콘 온 인슐레이터 웨이퍼를 이용한 수직구조의 모스커패시터의 제조방법
US6876042B1 (en) 2003-09-03 2005-04-05 Advanced Micro Devices, Inc. Additional gate control for a double-gate MOSFET
US6962843B2 (en) * 2003-11-05 2005-11-08 International Business Machines Corporation Method of fabricating a finfet
KR100935988B1 (ko) * 2003-12-08 2010-01-08 인터내셔널 비지네스 머신즈 코포레이션 증가된 노드 커패시턴스를 갖는 반도체 메모리 장치
US7105390B2 (en) * 2003-12-30 2006-09-12 Intel Corporation Nonplanar transistors with metal gate electrodes
US7268058B2 (en) * 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7154118B2 (en) * 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7579280B2 (en) * 2004-06-01 2009-08-25 Intel Corporation Method of patterning a film
US7042009B2 (en) * 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7279756B2 (en) * 2004-07-21 2007-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with high-k gate dielectric and quasi-metal gate, and method of forming thereof
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US7332439B2 (en) * 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7422946B2 (en) * 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7361958B2 (en) 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7332407B2 (en) * 2004-12-23 2008-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for a semiconductor device with a high-k gate dielectric
US7518196B2 (en) * 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) * 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7858481B2 (en) * 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) * 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7402875B2 (en) * 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US20070090416A1 (en) * 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090408A1 (en) * 2005-09-29 2007-04-26 Amlan Majumdar Narrow-body multiple-gate FET with dominant body transistor for high performance
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7396711B2 (en) * 2005-12-27 2008-07-08 Intel Corporation Method of fabricating a multi-cornered film
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US20080157225A1 (en) * 2006-12-29 2008-07-03 Suman Datta SRAM and logic transistors with variable height multi-gate transistor architecture
EP2070533B1 (en) * 2007-12-11 2014-05-07 Apoteknos Para La Piel, s.l. Use of a compound derived from P-hydroxyphenyl propionic acid for the treatment of psoriasis
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
WO2011097802A1 (zh) * 2010-02-11 2011-08-18 中国科学院上海微系统与信息技术研究所 全包围栅cmos场效应晶体管
US20130320453A1 (en) * 2012-06-01 2013-12-05 Abhijit Jayant Pethe Area scaling on trigate transistors
US9224849B2 (en) * 2012-12-28 2015-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with wrapped-around gates and methods for forming the same
US9859429B2 (en) * 2013-01-14 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of fabricating same
US9147682B2 (en) 2013-01-14 2015-09-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fin spacer protected source and drain regions in FinFETs
US8901607B2 (en) 2013-01-14 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabricating the same
US9318606B2 (en) 2013-01-14 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of fabricating same
US9209303B2 (en) 2013-01-14 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET device
US9006786B2 (en) 2013-07-03 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of semiconductor device
US9735255B2 (en) 2013-01-18 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a finFET device including a stem region of a fin element
US9006842B2 (en) 2013-05-30 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Tuning strain in semiconductor devices
US9349850B2 (en) 2013-07-17 2016-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Thermally tuning strain in semiconductor devices
US9159833B2 (en) 2013-11-26 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of semiconductor device
US9219116B2 (en) 2014-01-15 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of semiconductor device
US9548213B2 (en) * 2014-02-25 2017-01-17 International Business Machines Corporation Dielectric isolated fin with improved fin profile
US9520498B2 (en) 2014-03-17 2016-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET structure and method for fabricating the same
US9209185B2 (en) * 2014-04-16 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for FinFET device
US10468528B2 (en) 2014-04-16 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device with high-k metal gate stack
US9257428B2 (en) 2014-04-24 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET device
US9178067B1 (en) 2014-04-25 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET device
US9721955B2 (en) 2014-04-25 2017-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for SRAM FinFET device having an oxide feature
US9224736B1 (en) 2014-06-27 2015-12-29 Taiwan Semicondcutor Manufacturing Company, Ltd. Structure and method for SRAM FinFET device
CN105470301B (zh) * 2014-09-10 2018-10-02 中国科学院微电子研究所 一种FinFET结构及其制造方法
US10043900B1 (en) 2017-03-20 2018-08-07 International Business Machines Corporation Vertical transport Fin field effect transistors on a substrate with varying effective gate lengths
US10157800B2 (en) 2017-04-24 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
FR3069952B1 (fr) 2017-08-07 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Realisation d'un transistor a structure de canal et regions de source et de drain en semi-metal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289027A (en) * 1988-12-09 1994-02-22 Hughes Aircraft Company Ultrathin submicron MOSFET with intrinsic channel
US5340754A (en) * 1992-09-02 1994-08-23 Motorla, Inc. Method for forming a transistor having a dynamic connection between a substrate and a channel region
US6100159A (en) * 1997-11-06 2000-08-08 Advanced Micro Devices, Inc. Quasi soi device

Also Published As

Publication number Publication date
TW487977B (en) 2002-05-21
US6359311B1 (en) 2002-03-19
CN1368756A (zh) 2002-09-11

Similar Documents

Publication Publication Date Title
CN1172357C (zh) 近环绕栅极及制造具有该栅极的硅半导体器件的方法
US6611029B1 (en) Double gate semiconductor device having separate gates
CN100346456C (zh) 一种mosfet半导体及其制造方法
US7807523B2 (en) Sequential selective epitaxial growth
US7508031B2 (en) Enhanced segmented channel MOS transistor with narrowed base regions
US7605449B2 (en) Enhanced segmented channel MOS transistor with high-permittivity dielectric isolation material
US8466490B2 (en) Enhanced segmented channel MOS transistor with multi layer regions
KR100189966B1 (ko) 소이 구조의 모스 트랜지스터 및 그 제조방법
CN1282233C (zh) 双栅极场效应晶体管及其制造方法
US20060223265A1 (en) Vertical transistor of semiconductor device and method for forming the same
US20080035997A1 (en) Fin Field-Effect Transistor and Method for Fabricating a Fin Field-Effect Transistor
KR101066271B1 (ko) 얇아진 바디를 갖는 좁은 바디의 다마신 3중 게이트 핀펫
CN1771589A (zh) 形成FinFET装置中的栅极以及薄化该FinFET装置的沟道区中的鳍的方法
CN1520610A (zh) 新型动态随机存取存储器存取晶体管
CN1708855A (zh) 具有u字型栅极结构的半导体器件
CN1711630A (zh) 磨平栅极材料以改善半导体装置中的栅极特征尺寸的方法
CN1674239A (zh) 场效应晶体管及其制造方法
CN1806340A (zh) 用于化学机械研磨平面化的双硅层鳍状场效应晶体管
CN1868069A (zh) 用于减少短沟道效应的凹陷沟道快闪架构
CN1734784A (zh) 绝缘横向双扩散金属氧化物半导体(ldmos)集成电路技术
CN1845337A (zh) 具有长栅极和致密节距的场效应晶体管设计及其制造方法
JP3060976B2 (ja) Mosfetおよびその製造方法
CN1649173A (zh) 半导体器件及其制造方法
CN1956214A (zh) 场效应晶体管及其制造方法
US6876042B1 (en) Additional gate control for a double-gate MOSFET

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20041020