CN100477168C - 用于改善6t cmos sram单元稳定性的方法和装置 - Google Patents

用于改善6t cmos sram单元稳定性的方法和装置 Download PDF

Info

Publication number
CN100477168C
CN100477168C CNB2004800356519A CN200480035651A CN100477168C CN 100477168 C CN100477168 C CN 100477168C CN B2004800356519 A CNB2004800356519 A CN B2004800356519A CN 200480035651 A CN200480035651 A CN 200480035651A CN 100477168 C CN100477168 C CN 100477168C
Authority
CN
China
Prior art keywords
tri
fin
pull
gate transistors
sram cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800356519A
Other languages
English (en)
Other versions
CN1890798A (zh
Inventor
休曼·达塔
布赖恩·多伊尔
罗伯特·乔
杰克·卡瓦莱厄斯
B·郑
斯科特·哈雷兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1890798A publication Critical patent/CN1890798A/zh
Application granted granted Critical
Publication of CN100477168C publication Critical patent/CN100477168C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners

Abstract

本发明是一种CMOS SRAM单元,包括:两个存取器件,每一个存取器件由具有单个鳍(410)的三栅晶体管(400)构成;两个上拉器件,每一个上拉器件由具有单个鳍(410)的三栅晶体管(400)构成;以及,两个下拉器件,每一个下拉器件由具有多个鳍(410)的三栅晶体管(500)构成。还提供了一种用于制造所述CMOS SRAM单元,包括双鳍三栅晶体管的方法。由于鳍,栅极长度相对于具有相同面积的平面晶体管被增加了。因此,增加了单元比率和静态噪声容限,提供了改善的稳定性而不增加单元面积或电源电压。

Description

用于改善6T CMOS SRAM单元稳定性的方法和装置
发明背景
1.发明领域
本发明涉及半导体集成电路设计和制造领域,并特别涉及使用三栅全耗尽型衬底晶体管(tri-gate fully depleted substrate transistor)的6T CMOS SRAM单元及其制造方法。
2.相关领域讨论
随着硅技术不断从一代升级到下一代,最小几何尺寸的体平面晶体管的本征阈值电压(Vt)变化的影响减小了CMOS SRAM单元静态噪声容限(SNM)。由日益变小的晶体管几何形状所导致的SNM减小是不期望的。当Vcc被缩小到更低的电压时,SNM被进一步减小。
平面晶体管阈值电压(Vt)变化主要源自于晶体管耗尽区中掺杂物质原子的数量和/或位置的统计波动。Vt变化给电源电压、晶体管尺寸的缩小造成了障碍,因而给最小的6晶体管(6T)CMOS SRAM单元尺寸的缩小造成了障碍。由于管芯(die)尺寸和成本约束,这限制了以常规6T SRAM为主导的高性能CMOS ASIC和微处理器的总晶体管数。
目前,通过以下(a)或(b)手段,在电路/布图(layout)层面(level)解决由SRAM单元晶体管的Vt不稳定性导致的减小的SNM问题:(a)增加使单元工作所需要的最小电源电压(Vccmin),并保持最小几何尺寸晶体管,或者(b)增加单元晶体管的沟道(channel)长度和宽度,以便以最小单元尺寸为代价,使得更低的最小工作电压成为可能。在器件层面上,以额外的制造工艺复杂性为代价,利用箱形阱(box-shaped well)或超陡倒掺杂阱(super-steep retrograde well),可以最小化平面器件中源自随机掺杂物质波动(RDF)的Vt失配。
图1中示出了一种使用平面晶体管的6T CMOS SRAM单元电路图。该SRAM单元由两个N型存取器件102,两个N型下拉器件104,以及两个P型上拉器件106组成。
图2示出了使用平面晶体管的6T CMOS SRAM单元的布图。每一个存取器件的栅极位于区域202中。每一个下拉器件的栅极位于区域204中。每一个上拉器件的栅极位于区域206中。栅极区域由P型扩散212或N型扩散210之上的多晶硅区域214指示。金属层218提供电源(Vcc)和地(Vss)。金属层218也可以将单元中的一个平面晶体管的栅极/源极/漏极连接到单元中另一个晶体管的栅极/源极/漏极,并且可以将一个单元互连到另一个。接触体(contact)216指示可以连接到金属层的区域。对于给定的Vcc,通过定出每一个存取晶体管宽度和每一个下拉晶体管宽度的大小来定制单元比率(cell ratio),以便获得最大的SNM值。
图3是说明电源电压缩小对使用平面晶体管的典型6T CMOS SRAM单元的影响的图300。这些噪声容限值假定为标称阈值电压、标称Vcc,以及标称器件尺寸。虚线310指示SNM的最小期望值240毫伏。该图示出,当Vcc从2伏缩小到小于1伏时,单元比率必定增加,以便保持期望的SNM值。对于1.5的单元比率(302),在保持240毫伏的标称SNM的同时能够获得的最小电压略低于2.0伏。当单元比率增加到2.0(304)时,在保持标称SNM的同时能够获得的最小电压小于1.5伏。如果单元比率增加到3.5(306),则最小电压可以被减小到小于1.0伏。但是,增加单元比率对应以增加单元尺寸为形式的面积损失。
附图简要说明
图1图示使用平面晶体管的现有技术6T CMOS SRAM单元电路图。
图2图示使用平面晶体管的现有技术6T CMOS SRAM单元布图。
图3为针对不同单元比率的6T SRAM单元图示作为电源电压的函数的静态噪声容限的图。
图4是单鳍三栅晶体管的剖视图。
图5是双鳍三栅晶体管的剖视图。
图6图示具有根据本发明的一个实施方案的三栅晶体管的6T CMOS SRAM单元电路图。
图7图示使用根据本发明的一个实施方案的单鳍和双鳍三栅晶体管的6T CMOSSRAM单元布图。
图8是根据本发明的一个实施方案的双鳍三栅晶体管与平面晶体管的栅极宽度的比较。
图9是将根据本发明一个实施方案的三栅SRAM的SNM(作为电源电压的函数)和平面SRAM的SNM(作为电源电压的函数)进行比较的图,其中两种SRAM单元具有相同的布图面积。
图10是描述形成根据本发明的一个实施方案的双鳍三栅晶体管的流程图。
图11A到11J示出了根据本发明的一个实施方案的双鳍三栅晶体管的形成。
具体实施方式
本发明是使用非平面三栅晶体管的6T CMOS SRAM单元及其制造方法。在下面的描述中,为了提供对本发明透彻的理解,给出了许多具体细节。在其他的实例中,为了不要不必要地模糊本发明,未详细地描述公知的半导体工艺以及制造技术。
本发明利用非平面三栅晶体管更高的驱动电流性能来改善6T CMOS SRAM单元的稳定性,从而能够实现(enable)低电源电压工作和减小的单元布图尺寸。对于给定的布图宽度,多鳍结构的三栅晶体管能够比平面晶体管输送更多的驱动电流。
图4示出了典型的单鳍三栅晶体管400的剖面图。单鳍三栅晶体管是具有单个半导体主体(semiconductor body)410的三栅晶体管。半导体主体也将被称为“半导体鳍(fin)”。半导体主体在绝缘衬底402上形成。绝缘衬底由硅或其他在半导体衬底404之上的掩埋氧化物或其他的绝缘层406构成。在半导体鳍410之上以及侧面上形成栅极电介质416。在栅极电介质之上以及侧面上形成栅极电极420。栅极电极具有栅极宽度GL。在栅极电极两侧上的半导体鳍中形成源极S和漏极D区域。
半导体鳍具有上表面412和在横向相对的侧壁414。半导体鳍具有等于Tsi的高度或厚度。半导体鳍具有等于Wsi的宽度。单鳍三栅晶体管的栅极宽度等于在半导体主体上形成的三个栅极中的每一个的栅极宽度之和,或者说Tsi+Wsi+Tsi。
图5示出了根据本发明的一个实施方案的典型双鳍三栅晶体管500的剖面图。双鳍三栅晶体管是在绝缘衬底402之上具有两个半导体主体或鳍的三栅晶体管,所述两个鳍每一个均具有在上表面和在横向相对的侧壁上形成的栅极电介质,并共享在栅极电介质之上以及周围形成的单个栅极电极。每一个半导体鳍均具有上表面412和在侧面上相对的侧壁414。这些半导体鳍被隔开距离Ds。利用常规光刻技术的图形化允许大约240nm的最小Ds。双鳍三栅晶体管的栅极宽度等于这两个半导体主体中的每一个的栅极宽度之和,或者说[2(Tsi1)+(Wsil)]+[2(Tsi2)+(Wsi2)]。如果以使得每一个半导体主体均具有基本类似的尺度的方式来形成这些半导体主体,则双鳍三栅晶体管的栅极宽度实际上是单鳍三栅晶体管栅极宽度的两倍。通过给三栅晶体管增加额外的鳍,能够进一步增加三栅晶体管的栅极宽度。对于给定的布图宽度,多鳍结构的三栅晶体管能够比平面三极管输送更多的驱动电流,因为具有和平面晶体管相同尺寸的三栅晶体管将具有更大的栅极宽度。
图6示出了使用根据本发明的一个实施方案的三栅晶体管的6T CMOS SRAM单元电路图。SRAM单元由两个N型存取器件602,两个N型下拉器件604,以及两个P型上拉器件606组成。每一个N型存取器件602均为单鳍三栅晶体管。每一个P型上拉器件606均为单鳍三栅晶体管。每一个N型下列器件604均为双鳍三栅晶体管。使用双鳍三栅晶体管作为下拉器件允许电路设计者获得SRAM单元的更高的单元比率。双鳍三栅晶体管将比单鳍三栅晶体管输送更多的电流,因而增加了单元比率却不增加单元布图尺寸。
SRAM单元的单元比率被定义为下拉N型晶体管的跨导因子与存取N型晶体管的跨导因子的比率。晶体管的跨导因子等于栅极宽度与栅极长度乘上迁移率(mobility)及栅极电容的比例。其中迁移率及栅极电容从存取晶体管到下拉晶体管是不变的,跨导因子变成晶体管栅极宽度与晶体管栅极长度的比例。双鳍三栅晶体管的跨导因子将大于平面晶体管的跨导因子,因为在相同的布图面积内,双鳍三栅晶体管的晶体管栅极宽度大于平面晶体管的晶体管栅极宽度。此外,双鳍三栅晶体管的跨导因子将大于单鳍三栅晶体管的跨导因子,因为双鳍器件的栅极宽度与栅极长度的比率将大于单鳍器件的这一比率。使用双鳍三栅晶体管作为下拉器件增加了下拉器件的跨导因子,因而增加了SRAM单元的单元比率。如上所述,通过增加单元比率,能够获得更高的因而更令人期望的静态噪声容限(SNM)水平。在SRAM单元设计中使用非平面三栅晶体管允许增加单元比率而不增加物理单元布图尺寸。下面的表1是使用平面晶体管的SRAM单元和使用三栅晶体管的SRAM单元的单元比率的比较,其中,每一个SRAM单元均具有相同的布图面积。
Figure C20048003565100071
表1
图7示出了使用根据本发明的一个实施方案的三栅晶体管的6T CMOS SRAM单元布图。每一个存取器件的栅极均位于区域702中。每一个下拉器件的栅极均位于区域704中。每一个下拉器件均为双鳍器件。器件的每一个鳍由牺牲块(sacrificial block)709任一侧上的区域708指示。牺牲块709用于形成彼此非常邻近的鳍。使用牺牲块709允许鳍彼此被隔开小于100nm,这对于使用传统的光刻来讲是不可能的。每一个上拉器件的栅极均位于区域706中。栅极区域由P型扩散712或者N型扩散710区域之上的多晶硅区域714指示。金属层718提供电源(Vcc)和地(Vss)。金属层718也可以将单元中的一个平面晶体管的栅极/源极/漏极连接到单元中另一个晶体管的栅极/源极/漏极,并且可以将一个SRAM单元连接到另一个。接触体716指示可以进行到金属层的连接的区域。对于给定的Vcc,通过定出每一个存取晶体管宽度和每一个下拉晶体管宽度的大小来定制单元比率(cell ratio),以便获得最大的SNM值。如上所述,使用N型双鳍三栅器件作为下拉器件以及N型单鳍三栅器件作为存取器件,允许三栅SRAM单元被设计成在和平面SRAM单元相同的布图面积内具有更高的单元比率。
图8是根据本发明的一个实施方案的双鳍三栅晶体管的栅极宽度与相同布图面积内的平面晶体管的栅极宽度的比较。剖面图800示出了在绝缘衬底808上形成的双鳍三栅晶体管。三栅晶体管的鳍由半导体主体802形成。鳍被分开的距离为Ds,距离Ds由上面描述的牺牲块的宽度决定。距离Ds可以由可被图形化的最小光刻特征尺寸来限定。栅极电介质804覆盖了栅极区域中三栅晶体管的每一个鳍。在栅极电介质以及每一个半导体鳍之上以及周围形成栅极电极806。针对该双鳍三栅晶体管的每一个鳍,形成了三个栅极G1、G2和G3。被形成的每一个栅极均具有栅极宽度。G1的栅极宽度等于Z1,或者说鳍的高度。G2的栅极宽度等于Z2,或者说鳍的宽度。G3的栅极宽度等于Z3,或者说鳍的高度。。每一个鳍总的栅极宽度等于Z1+Z2+Z3。对于双鳍三栅晶体管,总的栅极宽度等于2(Z1+Z2+Z3)。具有N个鳍的三栅晶体管具有等于N(Z1+Z2+Z3)的总栅极宽度。在本发明的一个实施方案中,Z1=60nm,Z2=60nm,Z3=60nm,并且Ds=60nm。根据这个实施方案的三栅晶体管的栅极宽度是2(60nm+60nm+60nm),或者说360nm。所使用的总的布图宽度等于Z3+D+Z3,或者说(60nm+60nm+60nm)=180nm。
剖面图820示出了在半导体衬底828上形成的平面晶体管。该平面晶体管的栅极宽度等于晶体管822的宽度,或者说Zp。对于180nm的布图宽度,平面晶体管820的栅极宽度等于180nm。因为对于相同的布图面积,三栅晶体管的栅极宽度是平面晶体管的栅极宽度的两倍,所以有可能通过设计使用根据本发明的一个实施方案的单鳍和双鳍三栅晶体管的单元,来增加6T CMOS SRAM单元的单元比率。
图9为针对平面SRAM单元920和三栅SRAM单元910,示出作为Vcc的函数的静态噪声容限(SNM)的图900,其中,这些单元尺寸相同。三栅SRAM单元设计允许在超过240mv(930)的SNM下限之前将Vcc缩小得更低。因为当使用根据本发明的一个实施方案的三栅晶体管设计SRAM单元时单元比率更高,所以电源电压可以被缩小得更低而不将SNM减小到240毫伏以下。使用平面晶体管设计的SRAM单元能够在略小于2.0伏的电源电压下工作而不将SNM减小到240毫伏以下。尺寸相同但是使用根据本发明的一个实施方案的双鳍和单鳍三栅晶体管设计的SRAM单元在遭遇SNM限制之前可以在低得多的电源电压下工作。在SNM被减小到小于240毫伏之前,电源电压可以低至1.25伏。
图10为流程图1000,示出了根据本发明的一种过程,说明用于形成具有减小的布图宽度的多鳍三栅晶体管的一般方法。下面结合图11A到11J进一步详细地说明和描述流程图1000中的每一个框。
如框1002中所描述的那样,在绝缘衬底上形成硅或半导体膜。绝缘衬底包括底下的单晶硅衬底和顶部的绝缘层,例如二氧化硅膜或者氮化硅膜。绝缘层有时候被称为“掩埋氧化物”层。在本发明的一个实施方案中,半导体膜具有60nm的厚度。
然后,在半导体膜上形成具有上表面和横向相对的侧壁的牺牲块,如框1004中所描述的那样。在本发明的一个实施方案中,通过首先形成牺牲材料层并且使用光刻来图形化所述牺牲材料以便形成块,从而形成所述牺牲块。牺牲块可以由氮化物构成,但是不限于氮化物。牺牲块的宽度决定了鳍的间隔。在本发明的一个实施方案中,牺牲块横向相对的侧壁间隔60nm。在本发明的另一个实施方案中,牺牲块横向相对的侧壁间隔由使用光刻可形成的最小特征尺寸限定的距离。
形成牺牲块以后,在所述牺牲块和半导体膜之上以及周围形成绝缘层,如框1006中所描述的那样。绝缘层可以由氧化物或者另一种绝缘材料构成。沉积绝缘层使得该层的厚度大约等于期望的半导体鳍宽度。在本发明的一个实施方案中,绝缘层的厚度在40nm到80nm之间。在本发明的另一个实施方案中,绝缘层的厚度是60nm。
然后,通过在绝缘层上执行各向异性蚀刻,在牺牲块的任一侧面上均形成绝缘间隔物,如框1008中所描述的那样。各向异性蚀刻以后,绝缘间隔物将保持在牺牲块的任一侧面上。绝缘间隔物的宽度将等于原始绝缘层的厚度。在本发明的一个实施方案中,绝缘间隔物是60nm宽。
在本发明的另一个实施方案中,可以形成多个牺牲块,以便形成额外的间隔物。可以使用这种方法形成具有多于2个鳍的三栅晶体管。形成的鳍的数量将等于绝缘间隔物的数量。在本发明的一个实施方案中,可以形成偶数个鳍(2N)。为了形成具有2N个鳍的三栅晶体管,需要N个牺牲块和2N个绝缘间隔物。
形成绝缘间隔物以后,可以通过常规方法去除牺牲块,如框1010中所示。例如,可以使用选择性蚀刻工艺去除牺牲块,而绝缘间隔物保持不动。
接着,通过使用绝缘间隔物作为掩模蚀刻半导体膜形成两个半导体鳍,如框1012中所示。在未被绝缘间隔物覆盖的区域中的半导体膜被蚀刻掉,暴露出绝缘衬底。形成的每一个半导体鳍均具有上表面以及一对横向相对的侧壁。使用绝缘间隔物作为掩模允许鳍被分开比使用目前的光刻技术能够获得的距离更小的距离。目前的光刻允许印刷具有接近60nm的最小尺寸的特征以及特征之间接近240nm的最小间隔。使用根据本发明的方法的实施方案,可以形成间隔小于240nm的鳍。在本发明的一个实施方案中,鳍间隔60nm或者更小的距离。
图11A到图11J示出了根据本发明的一个实施方案的双鳍三栅晶体管的形成。双鳍三栅晶体管的制造以绝缘衬底1102开始,如图11A中所示。在绝缘衬底1102上形成了硅或半导体膜1108。绝缘衬底1102可以由底下的单晶硅衬底1104和顶部的绝缘层1106构成,绝缘层1106例如二氧化硅或氮化硅膜。绝缘层1106使半导体膜1108与衬底1104隔离,并且有时候被称为“掩埋氧化物”层。半导体膜1108可以由硅或另一种半导体构成,例如但不限于锗(Ge)、锗硅合金(SixGey)、砷化镓(GaAs)、InSb、GaP、GaSb或碳纳米管。半导体膜1108可以是本征或者说不掺杂的硅膜,或者,它可以被掺杂为p型或n型导电性。半导体膜1108被形成到厚度Tsi,厚度Tsi大约等于随后形成的三栅晶体管的半导体鳍的期望高度。在本发明的一个实施方案中,半导体膜1108具有60nm或更小的厚度。
图11B示出了在半导体膜1108上表面上形成牺牲块。牺牲块可以通过常规的半导体制造技术形成,包括但不限于沉积牺牲材料层1109,并随后用抗蚀剂1111图形化该层。未被抗蚀剂1111覆盖的牺牲材料可以被蚀刻,以便在期望位置形成一个或更多个牺牲块。在本发明的一个实施方案中,牺牲材料1109由氮化物构成。要形成的牺牲块的宽度Ws将限定三栅晶体管的半导体鳍以后的间隔。在本发明的一个实施方案中,Ws是60nm或者更小。使用牺牲块允许将半导体鳍分开60nm或者更小的距离,所述距离远远小于特征之间通过常规光刻技术能够获得的距离。
图11C示出了在绝缘块1110之上和周围,以及半导体膜1108的表面之上形成绝缘层1112。在本发明的一个实施方案中,绝缘层由氧化物构成。以允许绝缘层1112以具有均匀的厚度Tox的方式来沉积该层。在随后的处理步骤中,绝缘层的厚度将决定半导体鳍的宽度。在本发明的一个实施方案中,绝缘层具有60nm或者更小的厚度。
图11D示出了绝缘间隔物1114的形成。通过在图11C的绝缘层1112上执行各向异性蚀刻来形成绝缘间隔物1114。以允许绝缘层从牺牲块的上表面被完全去除,但是留下牺牲块的任一侧面上的绝缘间隔物的方式来执行各向异性蚀刻。绝缘层1114被形成为具有宽度Wox,宽度Wox等于图11C的绝缘膜的厚度Tox。在本发明的一个实施方案中,每一个绝缘间隔物的宽度Wox是60nm或者更小。
图11E示出了去除牺牲块以后形成的结构。通过常规方法可以去除牺牲块,包括使用选择性蚀刻工艺。例如,可以使用湿法蚀刻去除牺牲氮化物块,而氧化物将保持不受蚀刻工艺的影响。去除牺牲块以后,保持两个绝缘间隔物1114,每一个间隔物具有等于Wox的宽度。间隔物间隔等于牺牲块宽度Ws的距离。
图11F示出了半导体鳍1120的形成。通过使用绝缘间隔物1114作为掩模来蚀刻半导体膜1108,形成半导体鳍1120。在本发明的一个实施方案中,蚀刻是等离子干法蚀刻工艺。半导体膜被完全蚀刻,暴露出绝缘衬底1102的表面。半导体鳍被形成为具有宽度Wsi,宽度Wsi等于被用作掩模的绝缘间隔物的宽度。在本发明的一个实施方案中,Wsi是60nm或者更小。半导体鳍间隔等于先前形成的牺牲块宽度的距离Ds。在本发明的一个实施方案中,Ds是60nm或者更小。
形成半导体鳍1120以后,可以通过常规技术去除绝缘间隔物,如图11G中所示。在此刻,两个半导体鳍1120保留在绝缘衬底1102上。半导体鳍1120具有上表面1121,以及横向相对的侧壁1123。器件总的布图宽度将等于Wsi+Ds+Wsi。在本发明的一个实施方案中,器件总的布图宽度是180nm或者更小。
图11H示出了在每一个半导体鳍1120的上表面1121以及侧壁1123上形成栅极电介质层1122。通过仔细控制半导体鳍的拐角1125的几何形状,三栅晶体管可以被设计成固有地免受Vt不稳定性影响。半导体鳍的拐角由器件相邻的栅极G1、G2和G3(顶部和侧面)的相交部分形成。因为三栅晶体管的拐角1125首先导通,所以它决定了器件的阈值电压(Vt)。当Vt仅由掺杂物质注入来设定时,掺杂物质中可能存在波动,这反过来又可能引起Vt波动。当拐角的倒圆(rounding)受到控制时,三栅晶体管不依赖于掺杂来设定Vt,因此晶体管能够被设计成固有地免受Vt不稳定性影响。半导体鳍的拐角倒圆主要源自栅极电介质形成过程。可以在硅鳍的表面和侧壁上生长或者沉积栅极电介质1122。在本发明的一个实施方案中,使用原子层沉积(ALD)来沉积栅极电介质,这允许将拐角倒圆控制到原子尺度。在本发明的一个实施方案中,半导体鳍的每一个拐角的曲率半径R小于10nm。
接着,在每一个半导体鳍的上表面和侧壁之上以及绝缘衬底之上沉积栅极材料,如图11I中所示。图形化栅极材料以便在栅极电介质层上形成栅极电极1124。
形成栅极电极以后,在栅极电极的相对侧上的每一个半导体鳍中形成一对源极/漏极区域,如图11J中所示。在本发明的一个实施方案中,如箭头1130所示,通过将N型或者P型掺杂物质注入半导体主体形成源极和漏极区域。在本发明的实施方案中,可以在三栅器件上执行进一步的操作,包括但不限于:形成尖端或源极/漏极延伸区域、晕(halo)区域、重掺杂源极/漏极接触区域、沉积在源极/漏极和栅极电极区域上的硅,以及源极/漏极和栅极电极区域上的硅化物形成。
如图11J中所示,最终的双鳍三栅晶体管的每一个半导体鳍具有等于2Tsi+Wsi的栅极宽度。双鳍三栅晶体管的栅极宽度等于每一个鳍的栅极宽度之和,或者说2(2Tsi+Wsi)。可以在具有2Wsi+Ds的布图宽度的区域中制造该器件。在本发明的一个实施方案中,双鳍三栅晶体管的栅极宽度是360nm或者更少,并且器件在具有180nm或者更小的布图宽度的区域中形成。
在本发明其他的实施方案中,可以使用上面给出的方法形成具有多于2个的半导体鳍的三栅晶体管。

Claims (16)

1.一种电路,包括:
至少一个存取器件,所述至少一个存取器件由具有单个鳍的非平面晶体管构成;
至少一个上拉器件,所述至少一个上拉器件由具有单个鳍的非平面晶体管构成;以及
至少一个下拉器件,所述至少一个下拉器件由具有多个鳍的非平面晶体管构成。
2.如权利要求1所述的电路,其中,所述至少一个下拉器件由具有两个鳍的非平面三栅晶体管构成。
3.如权利要求2所述的电路,其中,所述非平面三栅晶体管的所述两个鳍被设置成彼此间隔小于60nm。
4.一种CMOS SRAM单元,包括:
两个存取器件,每一个存取器件由具有单个鳍的三栅晶体管构成;
两个上拉器件,每一个上拉器件由具有单个鳍的三栅晶体管构成;
两个下拉器件,每一个下拉器件由具有多个鳍的三栅晶体管构成,并且,
其中,所述CMOS SRAM单元具有单元比率,静态噪声容限(SNM),以及电源电压。
5.如权利要求4所述的CMOS SRAM单元,其中,每一个下拉器件由具有两个鳍的三栅晶体管构成,所述下拉器件的每一个鳍具有高度和宽度。
6.如权利要求5所述的CMOS SRAM单元,其中,所述下拉器件的所述鳍被设置成彼此间隔小于60nm。
7.如权利要求5所述的CMOS SRAM单元,其中,所述下拉器件的每一个鳍的所述高度是60nm。
8.如权利要求5所述的CMOS SRAM单元,其中,所述下拉器件的每一个鳍的所述宽度是60nm。
9.如权利要求4所述的CMOS SRAM单元,其中,每一个三栅晶体管包含至少一个拐角,每一个拐角具有小于10nm的曲率半径。
10.如权利要求4所述的CMOS SRAM单元,其中,所述单元比率大于2.0。
11.如权利要求4所述的CMOS SRAM单元,其中,所述静态噪声容限(SNM)大于240毫伏。
12.如权利要求11所述的CMOS SRAM单元,其中,所述电源电压小于1.5伏。
13.一种CMOS SRAM单元,包括:
两个N型存取器件,每一个N型存取器件由具有单个鳍的三栅晶体管构成;
两个P型上拉器件,每一个P型上拉器件由具有单个鳍的三栅晶体管构成;
两个N型下拉器件,每一个N型下拉器件由具有多个鳍的三栅晶体管构成。
14.如权利要求13所述的CMOS SRAM单元,其中,每一个N型下拉器件由具有两个鳍的三栅晶体管构成,所述N型下拉器件的每一个鳍具有高度和宽度。
15.如权利要求14所述的CMOS SRAM单元,其中,所述N型下拉器件的所述鳍被设置成彼此间隔小于60nm。
16.一种形成六晶体管(6T)CMOS SRAM单元的方法,包括:
形成两个N型存取器件,每一个N型存取器件由具有单个鳍的三栅晶体管构成;
形成两个P型上拉器件,每一个P型上拉器件由具有单个鳍的三栅晶体管构成;
形成两个N型下拉器件,每一个N型下拉器件由具有至少两个鳍的三栅晶体管构成。
CNB2004800356519A 2003-10-02 2004-09-29 用于改善6t cmos sram单元稳定性的方法和装置 Expired - Fee Related CN100477168C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/679,124 2003-10-02
US10/679,124 US6970373B2 (en) 2003-10-02 2003-10-02 Method and apparatus for improving stability of a 6T CMOS SRAM cell

Publications (2)

Publication Number Publication Date
CN1890798A CN1890798A (zh) 2007-01-03
CN100477168C true CN100477168C (zh) 2009-04-08

Family

ID=34394102

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800356519A Expired - Fee Related CN100477168C (zh) 2003-10-02 2004-09-29 用于改善6t cmos sram单元稳定性的方法和装置

Country Status (7)

Country Link
US (3) US6970373B2 (zh)
JP (1) JP2007509490A (zh)
KR (2) KR100915398B1 (zh)
CN (1) CN100477168C (zh)
DE (1) DE112004001864B4 (zh)
TW (1) TWI267858B (zh)
WO (1) WO2005034212A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022036A (zh) * 2011-09-22 2013-04-03 南亚科技股份有限公司 单边存取器件及其制造方法

Families Citing this family (278)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709982B1 (en) * 2002-11-26 2004-03-23 Advanced Micro Devices, Inc. Double spacer FinFET formation
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US6716686B1 (en) 2003-07-08 2004-04-06 Advanced Micro Devices, Inc. Method for forming channels in a finfet device
US6970373B2 (en) * 2003-10-02 2005-11-29 Intel Corporation Method and apparatus for improving stability of a 6T CMOS SRAM cell
US7498225B1 (en) 2003-12-04 2009-03-03 Advanced Micro Devices, Inc. Systems and methods for forming multiple fin structures using metal-induced-crystallization
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
JP2006019578A (ja) * 2004-07-02 2006-01-19 Toshiba Corp 半導体装置及びその製造方法
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
KR101025846B1 (ko) * 2004-09-13 2011-03-30 삼성전자주식회사 탄소나노튜브 채널을 포함하는 반도체 장치의 트랜지스터
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
KR100652381B1 (ko) * 2004-10-28 2006-12-01 삼성전자주식회사 다수의 나노 와이어 채널을 구비한 멀티 브릿지 채널 전계효과 트랜지스터 및 그 제조방법
US7241649B2 (en) * 2004-10-29 2007-07-10 International Business Machines Corporation FinFET body contact structure
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7403426B2 (en) * 2005-05-25 2008-07-22 Intel Corporation Memory with dynamically adjustable supply
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US7230842B2 (en) * 2005-09-13 2007-06-12 Intel Corporation Memory cell having p-type pass device
US7479421B2 (en) * 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7547947B2 (en) * 2005-11-15 2009-06-16 International Business Machines Corporation SRAM cell
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
JPWO2007063990A1 (ja) * 2005-12-02 2009-05-07 日本電気株式会社 半導体装置およびその製造方法
US7512017B2 (en) * 2005-12-21 2009-03-31 Intel Corporation Integration of planar and tri-gate devices on the same substrate
US20070152266A1 (en) * 2005-12-29 2007-07-05 Intel Corporation Method and structure for reducing the external resistance of a three-dimensional transistor through use of epitaxial layers
JP4490927B2 (ja) * 2006-01-24 2010-06-30 株式会社東芝 半導体装置
KR100718149B1 (ko) * 2006-02-07 2007-05-14 삼성전자주식회사 게이트-올-어라운드 구조의 반도체 소자
KR100719180B1 (ko) * 2006-02-28 2007-05-17 주식회사 하이닉스반도체 새들형트랜지스터와 핀형트랜지스터를 동시에 구비하는메모리소자 및 그의 제조 방법
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7456471B2 (en) * 2006-09-15 2008-11-25 International Business Machines Corporation Field effect transistor with raised source/drain fin straps
US20080099834A1 (en) * 2006-10-30 2008-05-01 Josef Willer Transistor, an inverter and a method of manufacturing the same
CN101601138B (zh) * 2007-01-22 2012-07-25 松下电器产业株式会社 半导体装置及其制造方法
US7838948B2 (en) * 2007-01-30 2010-11-23 Infineon Technologies Ag Fin interconnects for multigate FET circuit blocks
US7709893B2 (en) * 2007-01-31 2010-05-04 Infineon Technologies Ag Circuit layout for different performance and method
US7812373B2 (en) * 2007-02-12 2010-10-12 Infineon Technologies Ag MuGFET array layout
US20080211568A1 (en) * 2007-03-01 2008-09-04 Infineon Technologies Ag MuGFET POWER SWITCH
US20080212392A1 (en) * 2007-03-02 2008-09-04 Infineon Technologies Multiple port mugfet sram
KR100806610B1 (ko) 2007-03-13 2008-02-25 주식회사 하이닉스반도체 반도체 집적회로장치의 제조 방법
US8492796B2 (en) * 2007-03-13 2013-07-23 Infineon Technologies Ag MuGFET switch
US8063448B2 (en) * 2007-03-16 2011-11-22 Infineon Technologies Ag Resistive memory and method
US20080237672A1 (en) * 2007-03-30 2008-10-02 Doyle Brian S High density memory
US20080239859A1 (en) * 2007-03-30 2008-10-02 Infineon Technologies Ag Access device
US8004045B2 (en) 2007-07-27 2011-08-23 Panasonic Corporation Semiconductor device and method for producing the same
US8063437B2 (en) * 2007-07-27 2011-11-22 Panasonic Corporation Semiconductor device and method for producing the same
KR20100048954A (ko) * 2007-07-27 2010-05-11 파나소닉 주식회사 반도체장치 및 그 제조방법
DE102007041207B4 (de) * 2007-08-31 2015-05-21 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg CMOS-Bauelement mit Gateisolationsschichten mit unterschiedlicher Art und Dicke und Verfahren zur Herstellung
US7710765B2 (en) * 2007-09-27 2010-05-04 Micron Technology, Inc. Back gated SRAM cell
US7629643B2 (en) * 2007-11-30 2009-12-08 Intel Corporation Independent n-tips for multi-gate transistors
ES2489615T3 (es) * 2007-12-11 2014-09-02 Apoteknos Para La Piel, S.L. Uso de un compuesto derivado del acido p-hidroxifenil propionico para el tratamiento de la psoriasis
US20090152589A1 (en) * 2007-12-17 2009-06-18 Titash Rakshit Systems And Methods To Increase Uniaxial Compressive Stress In Tri-Gate Transistors
US20090166743A1 (en) * 2007-12-26 2009-07-02 Ravi Pillarisetty Independent gate electrodes to increase read stability in multi-gate transistors
US8009461B2 (en) * 2008-01-07 2011-08-30 International Business Machines Corporation SRAM device, and SRAM device design structure, with adaptable access transistors
US7800166B2 (en) * 2008-05-30 2010-09-21 Intel Corporation Recessed channel array transistor (RCAT) structures and method of formation
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US7829951B2 (en) * 2008-11-06 2010-11-09 Qualcomm Incorporated Method of fabricating a fin field effect transistor (FinFET) device
US8227867B2 (en) 2008-12-23 2012-07-24 International Business Machines Corporation Body contacted hybrid surface semiconductor-on-insulator devices
US8361871B2 (en) * 2008-12-24 2013-01-29 Intel Corporation Trigate static random-access memory with independent source and drain engineering, and devices made therefrom
US8116121B2 (en) * 2009-03-06 2012-02-14 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing methods with using non-planar type of transistors
US8405420B2 (en) 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US9711407B2 (en) 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US20110199116A1 (en) * 2010-02-16 2011-08-18 NuPGA Corporation Method for fabrication of a semiconductor device and structure
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US8384426B2 (en) * 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US8216902B2 (en) * 2009-08-06 2012-07-10 International Business Machines Corporation Nanomesh SRAM cell
US8294159B2 (en) 2009-10-12 2012-10-23 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8258572B2 (en) * 2009-12-07 2012-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. SRAM structure with FinFETs having multiple fins
US9362290B2 (en) * 2010-02-08 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell layout
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
CN102315268B (zh) * 2010-07-01 2013-07-10 中国科学院微电子研究所 半导体器件及其制造方法
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US8213257B2 (en) * 2010-08-09 2012-07-03 Faraday Technology Corp. Variation-tolerant word-line under-drive scheme for random access memory
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
TWI476768B (zh) * 2011-10-21 2015-03-11 Univ Nat Chiao Tung 獨立閘極控制靜態隨機存取記憶體
US8693235B2 (en) * 2011-12-06 2014-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for finFET SRAM arrays in integrated circuits
US8531871B2 (en) 2012-01-06 2013-09-10 International Business Machines Corporation 8-transistor SRAM cell design with Schottky diodes
US8526228B2 (en) 2012-01-06 2013-09-03 International Business Machines Corporation 8-transistor SRAM cell design with outer pass-gate diodes
US8619465B2 (en) 2012-01-06 2013-12-31 International Business Machines Corporation 8-transistor SRAM cell design with inner pass-gate junction diodes
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US8987835B2 (en) 2012-03-27 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with a buried semiconductor material between two fins
CN103367128A (zh) * 2012-03-29 2013-10-23 中国科学院微电子研究所 超陡倒掺杂沟道的形成方法、半导体器件及其制造方法
CN103367152B (zh) * 2012-03-31 2016-05-25 中芯国际集成电路制造(上海)有限公司 半导体器件、鳍式场效应管的形成方法
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US9041106B2 (en) * 2012-09-27 2015-05-26 Intel Corporation Three-dimensional germanium-based semiconductor devices formed on globally or locally isolated substrates
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
CN103219384B (zh) * 2013-04-03 2015-05-20 北京大学 一种抗单粒子辐射的多栅器件及其制备方法
US9111801B2 (en) * 2013-04-04 2015-08-18 Stmicroelectronics, Inc. Integrated circuit devices and fabrication techniques
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US8913455B1 (en) * 2013-07-29 2014-12-16 Xilinx, Inc. Dual port memory cell
US9349863B2 (en) * 2013-08-07 2016-05-24 Globalfoundries Inc. Anchored stress-generating active semiconductor regions for semiconductor-on-insulator finfet
CN104616990B (zh) * 2013-11-05 2017-09-29 中芯国际集成电路制造(上海)有限公司 金属栅极的形成方法
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US10164115B2 (en) 2014-06-27 2018-12-25 Intel Corporation Non-linear fin-based devices
CN105632549B (zh) * 2014-10-31 2019-01-22 展讯通信(上海)有限公司 Sram存储单元及提高其读写稳定性的电路
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
CN111863069B (zh) 2015-06-17 2022-05-10 联华电子股份有限公司 八晶体管静态随机存取存储器的布局图案与形成方法
US10515981B2 (en) 2015-09-21 2019-12-24 Monolithic 3D Inc. Multilevel semiconductor device and structure with memory
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
KR102308747B1 (ko) * 2015-12-03 2021-10-05 삼성전자주식회사 반도체 장치
US9799660B1 (en) 2016-05-11 2017-10-24 Globalfoundries Inc. Stable and reliable FinFET SRAM with improved beta ratio
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US9748251B1 (en) * 2016-11-15 2017-08-29 Globalfoundries Inc. Methods of forming semiconductor devices using semi-bidirectional patterning
CN106653861B (zh) * 2017-01-03 2019-08-02 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、阵列基板及其制备方法
US9871047B1 (en) * 2017-01-20 2018-01-16 United Microelectronics Corp. Memory structure and a method for forming the same
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
KR20210000529A (ko) * 2019-06-25 2021-01-05 삼성전자주식회사 집적 회로 반도체 소자
US11024369B1 (en) 2019-11-18 2021-06-01 International Business Machines Corporation Static random-access memory cell design

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391782B1 (en) * 2000-06-20 2002-05-21 Advanced Micro Devices, Inc. Process for forming multiple active lines and gate-all-around MOSFET

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214578A (ja) * 1988-07-01 1990-01-18 Fujitsu Ltd 半導体装置
US5521859A (en) * 1991-03-20 1996-05-28 Fujitsu Limited Semiconductor memory device having thin film transistor and method of producing the same
US5391506A (en) * 1992-01-31 1995-02-21 Kawasaki Steel Corporation Manufacturing method for semiconductor devices with source/drain formed in substrate projection.
JP3378414B2 (ja) * 1994-09-14 2003-02-17 株式会社東芝 半導体装置
US5602049A (en) 1994-10-04 1997-02-11 United Microelectronics Corporation Method of fabricating a buried structure SRAM cell
JPH08204191A (ja) * 1995-01-20 1996-08-09 Sony Corp 電界効果トランジスタ及びその製造方法
KR0165398B1 (ko) * 1995-05-26 1998-12-15 윤종용 버티칼 트랜지스터의 제조방법
US5814895A (en) 1995-12-22 1998-09-29 Sony Corporation Static random access memory having transistor elements formed on side walls of a trench in a semiconductor substrate
JPH09293793A (ja) 1996-04-26 1997-11-11 Mitsubishi Electric Corp 薄膜トランジスタを有する半導体装置およびその製造方法
US6066869A (en) * 1997-10-06 2000-05-23 Micron Technology, Inc. Circuit and method for a folded bit line memory cell with vertical transistor and trench capacitor
US6459123B1 (en) * 1999-04-30 2002-10-01 Infineon Technologies Richmond, Lp Double gated transistor
EP1091413A3 (en) * 1999-10-06 2005-01-12 Lsi Logic Corporation Fully-depleted, fully-inverted, short-length and vertical channel, dual-gate, cmos fet
EP1299914B1 (de) * 2000-07-04 2008-04-02 Qimonda AG Feldeffekttransistor
JP2002118255A (ja) * 2000-07-31 2002-04-19 Toshiba Corp 半導体装置およびその製造方法
JP4044276B2 (ja) * 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US6562665B1 (en) * 2000-10-16 2003-05-13 Advanced Micro Devices, Inc. Fabrication of a field effect transistor with a recess in a semiconductor pillar in SOI technology
US6413802B1 (en) 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US6341083B1 (en) * 2000-11-13 2002-01-22 International Business Machines Corporation CMOS SRAM cell with PFET passgate devices
US6472258B1 (en) * 2000-11-13 2002-10-29 International Business Machines Corporation Double gate trench transistor
US6630388B2 (en) * 2001-03-13 2003-10-07 National Institute Of Advanced Industrial Science And Technology Double-gate field-effect transistor, integrated circuit using the transistor and method of manufacturing the same
US6787402B1 (en) * 2001-04-27 2004-09-07 Advanced Micro Devices, Inc. Double-gate vertical MOSFET transistor and fabrication method
US6635923B2 (en) * 2001-05-24 2003-10-21 International Business Machines Corporation Damascene double-gate MOSFET with vertical channel regions
US6689650B2 (en) * 2001-09-27 2004-02-10 International Business Machines Corporation Fin field effect transistor with self-aligned gate
US6492212B1 (en) * 2001-10-05 2002-12-10 International Business Machines Corporation Variable threshold voltage double gated transistors and method of fabrication
US6657259B2 (en) 2001-12-04 2003-12-02 International Business Machines Corporation Multiple-plane FinFET CMOS
US6967351B2 (en) 2001-12-04 2005-11-22 International Business Machines Corporation Finfet SRAM cell using low mobility plane for cell stability and method for forming
US6583469B1 (en) * 2002-01-28 2003-06-24 International Business Machines Corporation Self-aligned dog-bone structure for FinFET applications and methods to fabricate the same
JP2003229575A (ja) * 2002-02-04 2003-08-15 Hitachi Ltd 集積半導体装置及びその製造方法
US6635909B2 (en) * 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US6642090B1 (en) * 2002-06-03 2003-11-04 International Business Machines Corporation Fin FET devices from bulk semiconductor and method for forming
US6657277B1 (en) * 2002-07-19 2003-12-02 United Microelectronics Corporation Method for forming antifuse via structure
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6770516B2 (en) * 2002-09-05 2004-08-03 Taiwan Semiconductor Manufacturing Company Method of forming an N channel and P channel FINFET device on the same semiconductor substrate
US6800910B2 (en) * 2002-09-30 2004-10-05 Advanced Micro Devices, Inc. FinFET device incorporating strained silicon in the channel region
US6833588B2 (en) * 2002-10-22 2004-12-21 Advanced Micro Devices, Inc. Semiconductor device having a U-shaped gate structure
US6611029B1 (en) * 2002-11-08 2003-08-26 Advanced Micro Devices, Inc. Double gate semiconductor device having separate gates
US6821834B2 (en) * 2002-12-04 2004-11-23 Yoshiyuki Ando Ion implantation methods and transistor cell layout for fin type transistors
US6869868B2 (en) * 2002-12-13 2005-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a MOSFET device with metal containing gate structures
US6794718B2 (en) * 2002-12-19 2004-09-21 International Business Machines Corporation High mobility crystalline planes in double-gate CMOS technology
US6803631B2 (en) * 2003-01-23 2004-10-12 Advanced Micro Devices, Inc. Strained channel finfet
US6885055B2 (en) * 2003-02-04 2005-04-26 Lee Jong-Ho Double-gate FinFET device and fabricating method thereof
US6800885B1 (en) * 2003-03-12 2004-10-05 Advance Micro Devices, Inc. Asymmetrical double gate or all-around gate MOSFET devices and methods for making same
US6909147B2 (en) * 2003-05-05 2005-06-21 International Business Machines Corporation Multi-height FinFETS
US6921982B2 (en) * 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
US6970373B2 (en) * 2003-10-02 2005-11-29 Intel Corporation Method and apparatus for improving stability of a 6T CMOS SRAM cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391782B1 (en) * 2000-06-20 2002-05-21 Advanced Micro Devices, Inc. Process for forming multiple active lines and gate-all-around MOSFET

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FinFET technology for future microprocessors. Ludwig,el.,al.2003 IEEE international SOI conference proceedings, Newport Beach, CA, Sept. 29, 2003. 2003
FinFET technology for future microprocessors. Ludwig,el.,al.2003 IEEE international SOI conference proceedings, Newport Beach, CA, Sept. 29, 2003. 2003 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022036A (zh) * 2011-09-22 2013-04-03 南亚科技股份有限公司 单边存取器件及其制造方法
CN103022036B (zh) * 2011-09-22 2015-10-28 南亚科技股份有限公司 单边存取器件

Also Published As

Publication number Publication date
US20050073060A1 (en) 2005-04-07
DE112004001864B4 (de) 2014-05-22
KR20080106978A (ko) 2008-12-09
TW200514082A (en) 2005-04-16
US7138305B2 (en) 2006-11-21
KR100915398B1 (ko) 2009-09-03
US7445980B2 (en) 2008-11-04
WO2005034212A3 (en) 2005-08-04
TWI267858B (en) 2006-12-01
US6970373B2 (en) 2005-11-29
WO2005034212A2 (en) 2005-04-14
US20060281236A1 (en) 2006-12-14
CN1890798A (zh) 2007-01-03
KR20060071429A (ko) 2006-06-26
US20050237850A1 (en) 2005-10-27
JP2007509490A (ja) 2007-04-12
DE112004001864T5 (de) 2006-08-03

Similar Documents

Publication Publication Date Title
CN100477168C (zh) 用于改善6t cmos sram单元稳定性的方法和装置
US11515418B2 (en) Vertical tunneling FinFET
US20230282522A1 (en) Fabrication of a vertical fin field effect transistor with reduced dimensional variations
US6967351B2 (en) Finfet SRAM cell using low mobility plane for cell stability and method for forming
US6664582B2 (en) Fin memory cell and method of fabrication
US7247887B2 (en) Segmented channel MOS transistor
US7960232B2 (en) Methods of designing an integrated circuit on corrugated substrate
US7265008B2 (en) Method of IC production using corrugated substrate
CN105702568B (zh) 静态随机存取存储器的制造方法与半导体装置的制造方法
KR101313473B1 (ko) 역 t 채널 트랜지스터를 포함하는 다수의 디바이스 타입및 그 방법
US20040094807A1 (en) Tri-gate devices and methods of fabrication
US20060038216A1 (en) Formation of capacitor having a Fin structure
WO2008155208A1 (en) Fin field effect transistor devices with self-aligned source and drain regions
KR20080050441A (ko) 벌크 기판상에 평면 및 비평면 cmos 트랜지스터를집적하는 프로세스 및 그에 의하여 제조된 물품
US20010017392A1 (en) Vertical transport MOSFETs and method for making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090408

Termination date: 20190929