CA2904068A1 - Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye - Google Patents

Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye Download PDF

Info

Publication number
CA2904068A1
CA2904068A1 CA2904068A CA2904068A CA2904068A1 CA 2904068 A1 CA2904068 A1 CA 2904068A1 CA 2904068 A CA2904068 A CA 2904068A CA 2904068 A CA2904068 A CA 2904068A CA 2904068 A1 CA2904068 A1 CA 2904068A1
Authority
CA
Canada
Prior art keywords
implant
obturator
trigger
trocar
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2904068A
Other languages
French (fr)
Other versions
CA2904068C (en
Inventor
Gary RANGEL-FRIEDMAN
David S. Haffner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaukos Corp
Original Assignee
Glaukos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaukos Corp filed Critical Glaukos Corp
Publication of CA2904068A1 publication Critical patent/CA2904068A1/en
Application granted granted Critical
Publication of CA2904068C publication Critical patent/CA2904068C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment

Abstract

Delivery devices, systems and methods are provided for inserting an implant into an eye. The delivery or inserter devices or systems can be used to dispose or implant an ocular stent or implant, such as a shunt, in communication with a suprachoroidal space of the eye. The implant can drain fluid from an anterior chamber of the eye to a physiologic outflow path of the eye, such as, the suprachoroidal space or other portion of the uveoscleral outflow path. The delivery or inserter devices or systems can be used in conjunction with other ocular surgery, for example, but not limited to, cataract surgery- through a preformed corneal incision, or independently with the inserter configured to make a corneal incision. The implant can be preloaded with or within the inserter to advantageously provide a sterile, easy-to-use package for use by an operator.

Description

SYSTEMS AND METHODS FOR DELIVERING AN OCULAR IMPLANT TO
THE SUP.RACHOROIDAL SPACE WITHIN AN EYE
FIELD
[0001] This disclosure generally relates to intraocular pressure reduction and more specifically to systems, devices and methods for delivering an intraocular implant to the suprachoroidal space within an eye to treat glaucoma, ocular hypertension and/or other ocular disorders.
BACKGROUND
[00021 A human eye is a specialized sensory organ capable of light reception and is able to receive visual images. Aqueous humor is a transparent liquid that fills at least the region between the cornea, at the front of the eye, and the lens. A
trabecular meshwork, located in an anterior chamber angle, which is formed between the iris and the cornea, normally serves as a drainage channel for aqueous humor from the anterior chamber so as to maintain a balanced pressure within the anterior chamber of the eye.
[00031 Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is a major treatment goal in glaucomas.
[00041 In glaucomas associated with an elevation in eye pressure (intraocular hypertension), a main source of resistance to outflow is typically in the trabecular meshwork. The tissue of the trabecular meshwork normally allows the aqueous humor (hereinafter also referred to as "aqueous") to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye. Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route) pathways. The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) can cause most of the resistance to aqueous outflow.
- I-100051 Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma.
Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents norinal drainage of aqueous from the anterior chamber of the eye.
100061 Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown. Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment.
100071 Most current therapies for glaucoma are directed toward decreasing intraocular pressure. Medical therapy includes topical ophthalmic drops or oral medications that reduce the production of aqueous or increase the outflow of aqueous.
However, drug therapies for glaucoma are sometimes associated with significant side effects. The most frequent and perhaps most serious drawback to drug therapy, especially the elderly, is patient compliance. Patients often forget to take their medication at the appropriate times or else administer eye drops improperly, resulting in under-or overdosing. Patient compliance is particularly problematic with therapeutic agents requiring dosing frequencies of three times a day or more, such as pilocaipine. Because the effects of glaucoma are irreversible, when patients dose improperly, allowing ocular concentrations to drop below appropriate therapeutic levels, further permanent damage to vision occurs.
SUMMARY
100081 As such, a need exists for a more facile, convenient, less invasive, and less traumatic means of delivering an intraocular pressure controlling implant into an eye while providing a cost-effective but safe surgical procedure. It is one advantage of certain embodiments of the invention(s) disclosed herein to provide delivery devices, systems and methods for inserting an implant into an eye. The delivery or inserter devices or systems can be used to dispose or implant an ocular stent or implant, such as a shunt, in communication with the suprachoroidal space, uveoseleral outflow pathway
-2-(sometimes referred to as uveal scleral outflow pathway) and/or supraciliary space of the eye. The implant can drain fluid from an anterior chamber of the eye to a physiologic outflow path of the eye, such as, the suprachoroidal space, uveoscleral outflow pathway, or supraciliary space. Alternatively, or in addition, the implant can elute a drug or therapeutic agent. The delivery or inserter devices or systems can be used in conjunction with other ocular surgery, for example, but not limited to, cataract surgery through a preformed corneal incision, or independently with the inserter configured to make a corneal or limbal incision. The implant can be preloaded with or within the inserter to advantageously provide an operator-friendly package, such as a sterile package, for convenient use by a surgeon, doctor or operator. In some embodiments, the implant is not preloaded within the delivery device or inserter and/or is not provided within the same package as the delivery device or inserter.
100091 While a majority of the aqueous leaves the eye through the trabecular meshwork and Schlemrn's canal, it is believed that at least about 10 to about 20 percent of the aqueous in humans leaves through the uveoscleral pathway. The degree with which uveoscleral outflow contributes to the total outflow of the eye appears to be species dependent. As used herein, the term "uveoscleral outflow pathway" is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the space or passageway whereby aqueous exits the eye by passing through the ciliary muscle bundles located at or near an angle of the anterior cham.ber and into the tissue planes between the choroid and the sclera, which extend posteriorly to the optic nerve. From these tissue planes, it is believed that the aqueous travels through the surrounding scleral tissue and drains via the scleral and conjunctival vessels, or is absorbed by the uveal blood vessels.
100101 As used herein, the term "supraciliary space" is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the portion of the uveoscleral pathway through the ciliary muscle and between the ciliary body and the sclera, and the term "suprachoroidal space" is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the portion of the uveoscleral outflow pathway between the choroid and sclera.
-3-100111 The term "implant" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to drainage shunts, stents, sensors, drug delivery implants, drugs, therapeutic agents, fluids, or any other device or substance capable of being permanently or temporarily inserted within an eye and left within a body after removal of a delivery instrument.
100121 As used herein, "implants" refers to ocular implants which can be implanted into any number of locations in the eye. In some embodiments, the ocular implants are drainage implants designed to facilitate or provide for the drainage of aqueous humor from the anterior chamber of an eye into a physiologic outflow pathway in order to reduce intraocular pressure. In some embodiments, the implant can be configured to provide a fluid flow path for draining aqueous humor from the anterior chamber to a uveoscleral outflow pathway. In some embodiments, the aqueous humor is diverted to the supraciliary space and/or the suprachoroidal space of the uveoscleral outflow pathway.
100131 If desired, more than one implant of the same or different type may be implanted. For example, the implants disclosed herein may be used in combination with trabecular bypass shunts, such as those disclosed in U.S. Patent Publication 2004/0050392, filed August 28, 2002, and those described in U.S. Patent Publication 2005/0271704, filed March 18, 2005, the entire contents of each of which are incorporated herein by reference. Additionally, implantation may be performed in combination with other surgical procedures, such as cataract surgery. All or a portion of the implant may be coated, e.g. with heparin, preferably in the flow path, to reduce blood thrombosis or tissue restenosis.
100141 In some embodiments, at least some slight and/or predetermined flexibility is provided to an obturator, or trocar, of an implant delivery system for ocular tissue penetration and to conform with an eye's structure and anatomy at or along the pathway to an implantation site. In some embodiments, at least some slight and/or predetermined flexibility is provided to an implant or stent to conform with the eye's structure and anatomy at or along the pathway to an implantation site. The terms "obturator" and "trocar" are used interchangeably herein, and in addition to their ordinary meanings, may refer to an elongate instrument with a generally rounded or non-sharp distal tip.
-4-10015] In accordance with several embodiments, an ocular implant delivery system includes a delivery device (e.g., an applicator or inserter) and an ocular implant.
The implant may be preloaded on or within the delivery device and provided as a kit within a package for convenient use by an operator. The delivery device may include a generally elongated outer housing that is ergonomically contoured. The delivery device may also include an elongated insertion sleeve partially disposed in the outer housing and having a non-linear exposed distal. portion extending out of a distal end of the housing.
The non-linear exposed distal portion of the insertion sleeve may have a curvature adapted to conform to an anatomical curvature of the eye, such as the cornea and/or sclera. The delivery device may include an obturator, or trocar, passing through a lumen of the insertion sleeve and having a non-linear distal portion extending beyond the non-linear distal portion of the insertion sleeve. In one embodiment, the obturator has a rounded, blunt or non-faceted distal end. In use, the non-linear distal portion of the obturator is adapted to provide access to a suprachoroidal space through a ciliary muscle attachment. In one embodiment, the access is provided without dissecting a ciliary body portion at the anterior chamber angle from the sclera but instead is provided by insertion of the obturator through a fibrous band of the ciliary muscle. In some embodiments, the non-linear distal portion of the obturator is flexible and has a curvature adapted to maintain pressure against the sclera during insertion into the suprachoroidal space. The delivery device may also include a trigger operatively coupled to the obturator such that movement of the trigger towards a proximal end of the housing retracts the obturator within the insertion sleeve, thereby deploying the implant off of the obturator.
100161 The implant is adapted to be disposed on the non-linear portion of the obturator and positioned distally of the non-linear distal portion of the insertion sleeve prior to insertion of the delivery device into an eye. For example, the implant may be loaded on the obturator by inserting a distal end of the obturator within a lumen of the implant and advancing the implant over the obturator or advancing the obturator toward a distal end of the implant. In some embodiments, in use, a distal end of the insertion sleeve is adapted to react against a proximal end of the implant as the obturator is being retracted to deliver the implant. The insertion sleeve may be sized to extend through a corneal incision and into an anterior chamber of the eye. In some embodiments, the implant has a curvature which substantially matches the curvature of the non-linear
-5-portion of the obturator. In some embodiments, the curvature of the non-linear distal portion of the obturator and/or the implant is larger than a diameter of the eye.
100171 In use, the trigger may be manually controlled and held in a forward position, and retracted in a backward motion to cause delivery of the implant once a distal end of the implant has been advanced to a desired location within the suprachoroidal space, wherein the backward motion of the obturator is adapted to prevent against over-insertion of the implant within the suprachoroidal space. In some embodiments, a distal tip of the obturator is rounded so as not to cause scraping of the sclera while still being adapted to provide access to the suprachoroidal space through the ciliary muscle attachment.
[00181 In some embodiments, the implant is an elongate tube having an outer diameter of the implant is between 300 and 400 microns. In some embodiments, a distal portion of the implant includes a plurality of circumferential retention members. A distal tip of the implant may be tapered. A proximal end of the implant may include a flange.
In some embodiments, the delivery device includes reuse prevention structures configured to limit use to a single use. For example, the reuse prevention structures ma include a pair of glue blocks mounted on each side of a trigger of the obturator adapted to melt upon sterilization to lock the trigger against further use.
[00191 In accordance with several embodiments, an ocular implant delivery system includes a delivery device, applicator or inserter having a generally elongated outer housing that is ergonomically contoured and an elongated insertion needle partially disposed in the outer housing and having a non-linear exposed distal portion.
The delivery device may further include an implant pusher tube extending through a lumen of the elongated insertion needle and having a non-linear distal portion. In one embodiment, the delivery device includes an obturator passing through a lumen of the pusher tube and having a non-linear distal portion. In use, the non-linear distal portion of the obturator may be adapted to provide access to a suprachoroidal space through a ciliary muscle attachment. The non-linear distal portion of the obturator may be flexible and have a curvature adapted to maintain pressure against the sclera during insertion into the suprachoroidal space. The delivery device may also include a pusher tube trigger operatively coupled to the pusher tube such that movement of the pusher tube trigger towards a proximal end of the housing retracts the obturator toward the housing. In use, a distal end of the pusher tube may be adapted to react against a proximal end of an implant
-6-loaded on to the obturator as the obturator is being retracted within the housing to deliver the implant.
[0020] In one embodiment, the insertion needle is a corneal penetration needle (e.g., a 25 5 gauge needle) adapted to create a self-sealing corneal incision (e.g., at or near the corneal limbus). The non-linear portions of the insertion needle, pusher tube and/or obturator may have a substantially matching curvature. The system may also include an implant preloaded onto the obturator and provided together with the delivery device in a kit or packaging. The implant may have a curvature that substantially conforms to or matches, the curvatures of the insertion needle, pusher tube and obturator.
[00211 In some embodiments, the pusher tube trigger is operatively coupled to a trigger of the obturator. The obturator may be advanceable and retractable by actuation of the trigger of the obturator. In some embodiments, when the pusher tube is fully advanced the pusher tube is locked to prevent further motion. The delivery device may include reuse prevention structures designed and/or adapted to limit use of the delivery device to a single use. For example, the reuse prevention structures may include a pair of glue blocks mounted on each side of the pusher tube trigger adapted to melt upon sterilization to lock the pusher tube trigger against further use.
[00221 In accordance with several embodiments, an ocular implant delivery device includes a generally elongated outer housing that is ergonomically contoured and an elongated insertion sleeve partially disposed in the outer housing and having a non-linear exposed distal portion. The ocular implant delivery device may also include a tubular support member surrounding a portion of the elongated insertion sleeve. The tubular support member may have a proximal end within the outer housing and a distal end extending outside of the outer housing. The tubular support member may be configured to facilitate coupling of the elongated insertion sleeve to the outer housing.
The tubular support member may surround a portion of the elongated insertion sleeve.
The delivery device may also include an obturator passing through a lumen of the elongated insertion sleeve and having a non-linear distal portion extending beyond the non-linear exposed distal portion of the elongated insertion sleeve and a trigger operatively coupled to the obturator such that actuation of the trigger retracts the obturator into the insertion sleeve, thereby causing a proximal end of an implant disposed on the non-linear portion of the obturator to react against a distal end of the insertion sleeve so as to facilitate deployment of the implant from the obturator. In some
-7-embodiments, the non-linear distal portion of the obturator carrying the implant is configured to be advanced into a suprachoroidal space of an eye and the non-linear distal portion of the obturator has a curvature configured to be larger than a diameter of the eye.
100231 For purposes of summarizing embodiments of the invention(s), certain aspects, advantages and novel features of the invention have been described herein above.
Of course, it is to be understood that not necessarily all such advantages may be achieved in accordance with ally particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.
100241 A11 of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS
100251 Having thus summarized the general nature of some of the embodiments of the invention(s) and some of their features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, which are intended to illustrate and not to limit the disclosure.
100261 FIG. 1 is a simplified schematic sectional view of a portion of an eye illustrating certain ocular anatomical features thereof and therein.
100271 FIG. 2 is a simplified perspective view of an implant delivery device preloaded with an ocular implant (which is shown in detail in FIG. 2A), illustrating features and advantages in accordance with certain embodiments.
[00281 FIG. 3 is a simplified exploded perspective view of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.
[00291 FIG. 4 is a simplified partially cut-off side view of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.
-8-[00301 FIG. 5 is a simplified side view of an ocular implant illustrating features and advantages in accordance with certain embodiments.
100311 FIG. 6 is a simplified bottom or lower view of the ocular implant of FIG. 5 illustrating features and advantages in accordance with certain embodiments.
100321 FIG. 7 is a simplified top or upper view of the ocular implant of FIG.
illustrating features and advantages in accordance with certain embodiments.
100331 FIG. 8 is a simplified sectional view along line 8-8 of the ocular implant of FIG. 7 illustrating features and advantages in accordance with certain embodiments.
[00341 FIG. 9 is a simplified side view of an insertion sleeve of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.
[00351 FIG. 10 is a simplified perspective view of an insertion sleeve assembly of the implant delivery device of FIG. 2, including the insertion sleeve of FIG.
9, illustrating features and advantages in accordance with certain em.bodiments.
[00361 FIG. 11 is a simplified side view of the insertion sleeve assembly of FIG. 10 illustrating features and advantages in accordance with certain embodiments.
100371 FIG. 12 is a simplified perspective of a trocar assembly of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.
100381 FIG. 13 is a simplified side view of the trocar assembly of FIG. 12 illustrating features and advantages in accordance with certain embodiments.
100391 FIG. 14 is a simplified distal end view of the trocar assembly of FIG.
12 illustrating features and advantages in accordance with certain embodiments.
[00401 FIG. 15 is a simplified proximal end view of the trocar assembly of FIG. 12 illustrating features and advantages in accordance with certain embodiments.
100411 FIG. 16 is a simplified perspective view of a trocar trigger of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.
[00421 FIG. 17 is a simplified perspective view of a safety clip of the implant delivery device of FIG. 2 illustrating features and advantages in accordance with certain embodiments.

100431 FIGS. 18 to 22 are simplified schematic views illustrating a surgical procedure or method of implanting an ocular implant in the suprachoroidal space of an eye using the implant delivery device of FIG. 2, having features and advantages in accordance with certain embodiments, wherein: FIG. 18 illustrates insertion of the implant and the delivery device into an anterior chamber of the eye; FIG. 19 illustrates positioning of the implant at an implantation site; FIG. 20 illustrates advancement and implantation of the implant in a suprachoroidal space formed between the choroid and the sclera; FIG. 21 illustrates retraction of a trocar of the delivery device from the suprachoroidal space; and FIG. 22 illustrates the removal of the delivery device from the anterior chamber of the eye with the implant remaining within the eye.
[0044] FIG. 23 is a simplified perspective view of an implant delivery device, preloaded with an ocular implant, illustrating features and advantages in accordance with certain embodiments.
[0045] FIG. 24 is a simplified exploded perspective view of the implant delivery device, including the implant, of FIG. 23 illustrating features and advantages in accordance with certain embodiments.
[00461 FIG. 25 is a simplified side view of a penetration needle of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.
[00471 FIG. 26 is a simplified bottom or lower view of the penetration needle of FIG. 25 illustrating features and advantages in accordance with certain embodiments.
[00481 FIG. 27 is a simplified perspective view of a penetration needle assembly of the implant delivery device of FIG. 23, including the penetration needle of FIG. 25, illustrating features and advantages in accordance with certain embodiments.
[00491 FIG. 28 is a simplified side view of the penetration needle assembly of FIG. 27 illustrating features and advantages in accordance with certain embodiments.
[0050] FIG. 29 is a simplified top or upper view of the penetration needle assembly of FIG. 27 illustrating features and advantages in accordance with certain embodiments.
[00511 FIG. 30 is a simplified sectional view along line 30-30 of FIG. 29 illustrating features and advantages in accordance with certain embodiments.

[00521 FIG. 31 is a simplified perspective view of a trocar assembly of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.
100531 FIG. 32 is a simplified side view of the trocar assembly of FIG. 31 illustrating features and advantages in accordance with certain embodiments.
100541 FIG. 33 is a simplified perspective view of a trocar trigger of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.
100551 FIG. 34 is a simplified perspective view of a pusher tube assembly of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.
[00561 FIG. 35 is a simplified side view of the pusher tube assembly of FIG.
34 illustrating features and advantages in accordance with certain embodiments.
[00571 FIG. 36 is a simplified perspective view of a pusher tube trigger of the implant delivery device of FIG. 23 illustrating features and advantages in accordance with certain embodiments.
[00581 FIG. 37 is a simplified perspective detail view from FIG. 24 of the engagement between a collar of the trocar assembly and the trocar trigger and between a collar of the pusher tube assem.bly and the pusher tube trigger illustrating features and advantages in accordance with certain embodiments.
100591 FIGS. 38A and 38B illustrate an implant loaded on the obturator, or trocar, of the delivery device of FIG. 23 and a distal end of the delivery device of FIG.
23, respectively, in accordance with certain embodiments.
100601 FIGS. 39 to 44 are simplified schematic views illustrating a surgical procedure or method of implanting an ocular implant in the suprachoroidal space of an eye using the implant delivery device of FIG. 23, having features and advantages in accordance with certain embodiments, wherein: FIG. 39 illustrates insertion of the implant and the delivery device into an anterior chamber of the eye through an incision made by an insertion needle of the delivery device; FIG. 40 illustrates deployment of a trocar and a pusher tube of the delivery or inserter system or device such that the implant is exposed within the anterior chamber; FIG. 41 illustrates positioning of the implant at an implantation site; FIG. 42 illustrates advancement and implantation of the implant in the suprachoroidal space; FIG. 43 illustrates retraction of a trocar of the delivery device from the suprachoroidal space; and FIG. 44 illustrates the removal of the delivery device from the anterior chamber of the eye with the implant remaining within the eye.
DEIA II D D ESC RI Irl'ION
[00611 The preferred embodiments of the invention described herein relate generally to intraocular pressure reduction and, in particular, to systems, devices and methods for delivering an intraocular implant to the suprachoroidal space, supraciliary space or other anatomical space within a uveoscleral outflow pathway of an eye to treat glaucoma, ocular hypertension and/or other ocular disorders.
[00621 While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein.
[00631 FIG. 1 shows relative anatomical features of an eye 10. The features include an anterior chamber 32 and a sclera 38, which is a thick collagenous tissue that covers the entire eye 10 except a portion that is covered by a cornea 36. The cornea 36 is a thin transparent tissue that focuses and transmits light into the eye and through a pupil 42, which is a generally circular hole in the center of an iris 44 (colored portion of the eye), to a lens 48. The cornea 36 merges into the sclera 38 at a juncture referred to as a limbus 45. Ciliary bodies 46 are vascular tissue that extend along the interior of the sclera 38 from the outer edges of the iris in the limbal region to a choroid 40.
[00641 The anterior chamber 32 of the eye 10, which is bound anteriorly by the cornea 36 and posteriorly by the iris 44 and the lens 48, is filled with aqueous humor or aqueous fluid (which may be simply referred to herein as aqueous). Aqueous is produced primarily by the ciliary bodies 46 and flows into the posterior chamber, bounded posteriorly by the lens 48 and anteriorly by the iris 44. The aqueous humor then flows anteriorly through the pupil 42 and into the anterior chamber 32 until it reaches an anterior chamber angle 50, formed generally between the iris 44 and the cornea 36.
[00651 In a normal eye, at least some of the aqueous humor drains from the anterior chamber 32 through a trabecular meshwork into Schlemrn's canal and thereafter through a plurality of collector ducts and aqueous veins, which merge with blood-carrying veins, and into systemic venous circulation. Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous humor in the manner described above. Glaucoma is, in most eases, characterized by an excessive buildup of aqueous humor in the anterior chamber 32, which leads to an increase in intraocular pressure. Fluids are relatively incompressible, and thus, intraocular pressure is distributed relatively uniformly throughout the eye 10.
100661 The choroid 40 is a vascular layer of the eye 10 located between the sclera 38 and a retina (not identified in FIG. 1). An optic nerve (not shown) transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma, ocular hypertension, and/or other ocular or ophthalmic disorders.
100671 Another existing aqueous drainage route is provided through a suprachoroidal space 34, which is a space or region generally defined between the sclera 38 and the choroid 40. The suprachoroidal space 34 is exposed to the anterior chamber 32 through the anterior chamber angle 50. The tissue connection between the anterior chamber 32 and suprachoroidal space 34 is generally via a fibrous attachment zone 60 generally disposed between a scleral spur 62 and iris processes 64 and/or ciliary muscle 66, which is a part of the choroid 40.
100681 Certain embodiments of suprachoroidal implants, delivery devices, associated components and suprachoroidal implantation methods and procedures, and the like, among others, are disclosed in U.S. Patent Application Publication No.
2008/0228127, published September 18, 2008, the entire content of which is incorporated by reference herein.
Delivery Device for Advancing Implant through Pre-Formed Corneal Incision 100691 FIGS. 2-4 show different views of an implant delivery device or applicator 110, preloaded with an ocular implant 120, in accordance with some embodiments. The delivery device 110 is configured to implant at least a portion of the implant 120 in the suprachoroidal space 34 of the eye 10. In some embodiments, the delivery method is performed via an ab intern insertion procedure. In some embodiments, the implant delivery method is performed in combination with other ocular surgery, such as cataract surgery, and the implant is delivered through a preformed incision in the cornea or at the corneal limbus, which may be formed in conjunction with the other ocular surgery. The incision may be a self-sealing incision to facilitate quick recovery without requiring sutures. In some embodiments, the ocular implant 120 is not preloaded within delivery device 110 (e.g., not preloaded in packaging at time of shipping).

[00701 The implant delivery device 110 can be provided in a sterile packaging for single-use operation. For example, a double polythene bag may be used for sterility purposes, in combination with a blister packaging to facilitate use by the operator while still maintaining safe usage.
[00711 The delivery device 110 is generally elongate in structure, and generally comprises an outer housing and handpiece 122, an implant retainer 124 (see FIG. 2A), an insertion sleeve, tube or needle assembly 126, a trocar assembly 128, a trocar trigger 130, a trigger safety device 132 and a pair of reuse prevention structures 134a and 134b.
100721 The outer housing 122 encloses various componentry of the delivery device 110 and can comprise two housing portions such as a left housing portion 136a and a right housing portion 136b, which can be attached during fabrication of the delivery device 110.
[00731 Selected portions of the outer housing and handpiece 122 have ergonomic features such as the hand grip area 138a, which has a ribbed texture or the like to facilitate manual handling by a surgeon, medical operator or practitioner (a similar hand grip area may be provided on the right housing portion 136b). Various internal structures of the outer housing 122 engage the other components of the delivery device 110, as discussed further below.
100741 The outer housing 122 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the outer housing 122 comprises a thermoplastic material such as medical grade polycarbonate that is gamma stable.
[00751 The outer housing 122 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the outer housing 122 has a length of about 5.60 inches, though other lengths may also be efficaciously utilized, for example, based on the size of the user's hand (e.g., between about 4 inches and about 8 inches or any length in between).
[00761 The implant retainer 124 (see FIG. 2A) is a generally disc shaped structure that is removably mounted on a distal tip of the trocar assembly 128 just distally of the implant 120. The implant retainer 124 is removed before the delivery device 110 is used. The implant retainer 124 may prevent undesirable movement of the implant and prevent the implant 120 from sliding off the distal tip of the trocar assembly 128 during packaging, shipping and travel of the implant delivery device 110. The implant retainer 124 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the implant retainer 124 comprises molded silicone.
[00771 The insertion sleeve assembly 126 generally comprises an insertion sleeve 140 and a support member 142 fixedly attached thereto and to the outer housing 122. The insertion sleeve 140 may comprise a sleeve, tube or needle. The support member 142 may comprise a sleeve. Distal portions of the insertion sleeve 140 and support member 142 are exposed and extend beyond the distal tip of the delivery device 110 while proximal portions of the insertion sleeve 140 and support member 142 are contained within the outer housing 122. The insertion sleeve assembly 126 is discussed in further detail later herein.
[0078J The trocar assembly 128 generally comprises an obturator, or trocar, 144 and a trocar support member 146 attached thereto. The trocar support member 146 is mechanically coupled, connected or attached to the actuatable trocar trigger 130. In one embodiment, the trocar support member 146 is a clip, as illustrated in FIGS. 2-4. A
substantial portion of the trocar 144 can extend through the insertion sleeve 140 with a distal portion extending beyond the insertion sleeve 140 on which the implant 120 is located. A proximal portion of the trocar 144 and the trocar support member 146 are contained within the outer housing 122. The trocar assembly 128 is discussed in further detail later herein.
[0079] The trocar trigger 130 generally comprises an upper finger or thumb actuatable portion 148 and a lower main body portion 150. The actuatable trigger portion 148 generally extends above the housing 122 while the main body portion 150 is generally contained within the housing 122. Before use, the trocar trigger 130 is in a forward position and, when in use, it is utilized to retract the trocar 144.
The trigger main body portion 150 is mechanically coupled, connected or attached to the trocar assembly 128. The trocar trigger 130 is discussed in further detail later herein.
[00801 The trigger safety device 132 is removable and is positioned generally rearwardly with respect to the trocar trigger 130 and is mechanically coupled or engaged with the trocar trigger 130. The trigger safety device 132 prevents undesirable motion of the trocar trigger 130 during packaging, shipping and travel of the implant delivery device 110, as also discussed further below. In one em.bodiment, the trigger safety device 132 is a clip.
100811 The reuse prevention structures 134a and 134b are mounted on each side of the trocar trigger 130 and within the outer housing 122. The reuse prevention structures 134a and 13413 may advantageously provide a safety function to disallow reuse of the delivery device 110 so as to prevent any cross-contamination between unauthorized reuse of the single use device 110. As discussed further below, the reuse prevention structures 134a and 134b, in one embodiment, are glue blocks or preform structures that are adapted to melt, dissolve or otherwise shrink or disappear when any unapproved re-sterilization of the delivery device 110 is attempted and lock or jam the trocar trigger 130 so that its movement is thwarted. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.
[0082] FIGS. 5-8 show different views of the ocular implant, stent or shunt 120 in accordance with some embodiments. The implant 120 generally comprises an elongate implant body 151 and a proximal. implant sleeve 152. The implant 120 and/or the implant body 151 comprises a lumen, channel, pathway or passage 154 extending therethrough for drainage of fluid (e.g., aqueous) from the anterior chamber 32 to the suprachoroidal space 34 and a plurality of generally circumferential retention features or structures, ribs, rings or anchors 156 to facilitate implantation and retention and/or stability in the suprachoroidal space 34. In the illustrated embodiment, the implant 120 comprises four retention features; however, other numbers of retention features may be used (e.g., two, three, five, six, seven, eight or more).
[00831 The implant 120 and/or the implant body 151 further comprises respective distal and proximal ribs, flanges or stops 158 and 160 which may hold the sleeve 152 in place. Moreover, the proximal structure 160 is dimensioned so that the implant cannot move rearwardly with respect to the distal end of the insertion sleeve 140.
Thus, the insertion sleeve 140 can act as a backing tube to react against a proximal end of the implant 120 during removal of the implant 120 from the delivery device 110.
100841 Advantageously, the implant 120 and/or the implant body 151 has a predetermined curvature and/or flexibility that substantially matches the curvature of the sclera and/or facilitates proper insertion in the suprachoroidal space 34. In some embodiments, the curvature of the implant 120 is configured to keep pressure on the sclera during implantation and prevent "tmdersteer" and/or choroid penetration. In some embodiments, the curvature of implant is greater than a diameter of the eye (e.g., greater than I inch). The lumen 154, in accordance with certain embodiments, allows for drainage or flow of fluid (e.g., aqueous) from the anterior chamber 32 to the suprachoroidal space 34. The length of the implant 120 can range from about 1 mm to about 8 mm (e.g., 1 inm, 2 inm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm).
[0085] The implant 120 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the implant body 151 comprises a plastic, such as polyethersulfone (PES), and the sleeve 152 comprises a metal or alloy, such as titanium or a titanium alloy. In some embodiments, the sleeve 152 provides a visual aid in determining the proper depth of stent placement during implantation (e.g., one or more radiopaque markers).
[0086] The implant 120, in some embodiments, can also comprise a therapeutic agent or drug. For example, at least a portion of the implant 120 is coated with a therapeutic agent or drug. In one embodiment, at least the implant lumen 154 is coated with a therapeutic agent or drug, such as, but not limited to, heparin or the like.
[0087] The implant 120 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R8 is about I inch, the diameter D8 is about at least 0.0063 inches, and the diameter D8 is about at least 340 microns. In some embodiments, the curvature is larger than the diameter of the eye (e.g., larger than 1 inch) to maintain pressure on the sclera during implantation. The implant 120 can be symmetrically designed such that it may be used in either the left or right eye. Other implants can be delivered by the delivery devices 110, 210 in addition to the implant 120.
100881 FIGS. 9-11 show different views of the insertion sleeve assembly 126 and insertion sleeve 140 in accordance with some embodiments. The insertion sleeve 140 is a generally elongated tubular structure with a lumen 162 extending therethrough and a distal curved or non-linear portion 164 to desirably facilitate ab intern suprachoroidal implantation.
[0089] The insertion sleeve support 142 is an elongated member through which a portion of the insertion sleeve 140 extends and is fixedly attached thereto. The insertion sleeve support 142 includes a collar 166 which mates with a corresponding portion of the outer housing 122 to fixedly attach these structures.

[00901 The insertion sleeve 140 TeCCIVCS a portion of the trocar 144 which passes through the sleeve lumen 162. The sleeve distal curved or non-linear portion 164 advantageously provides proper curvature and alignment of the trocar 144 and/or the implant 120 for suprachoroidal implantation.
[00911 The insertion sleeve assembly 126 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the insertion sleeve 140 and sleeve support 142 comprise a liquid crystal polymer or thermoplastic such as polycarbonate which are molded to form the assembly. In another non-limiting embodiment, the insertion sleeve 140 and sleeve support 142 comprise stainless steel and are welded (spot or continuous) to form the assembly. The insertion sleeve 140 can efficaciously comprise 26 5 gauge hypodermic tubing, as required or desired, including 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 gauge.
[0092] The insertion sleeve assembly 126 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the length L9.1 is about 1.8 inches, the length L92 is about 0.06 inches, the diameter D91 is about 0.018 inches, the diameter D92 is about 0.001 inches, the radius of curvature R9 is about 0.11 inches, and the angle 09 is about 28' (degrees).
[0093] FIGS. 12-15 show different views of the trocar assembly 128, in accordance with some embodiments. The obturator, or trocar, 144 is a generally elongated structure with a curved or non-linear distal portion 168 having a distal-most end 170 that is configured to optimally penetrate ocular tissue so as to access the suprachoroidal space 34. In one embodiment, the distal-most end is rounded to glide smoothly down the sclera while still being adapted to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space 34 atraumatically. In one embodiment, the distal-most end is adapted to puncture through a fibrous band at the anterior chamber angle to enter the suprachoroidal space 34.
[00941 The obturator, or trocar, 144 extends through the trocar support member 146, which is configured to engage the trocar trigger 130, and be retractable on actuation of the trocar trigger 130. The curved distal portion 168 may have a predetermined curvature to allow a proper angle of attack to penetrate ocular tissue to provide access for implantation of the implant 120 in the suprachoroidal space 34. The trocar may have slight flexibility to facilitate conformance to the eye anatomy during insertion. In one embodiment, the predetermined curvature is adapted to keep pressure on the sclera during implantation and prevent or inhibit "tmdersteer" or choroid penetration.
[00951 In some embodiments, the trocar support member 146 is configured to mechanically engage, couple, connect or fixedly attach to a recessed portion of the trocar trigger 130. Thus, actuation or retraction of the trocar trigger 130 may result in movement and retraction of the obturator, or trocar 144.
[00961 The trocar assembly 128 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar 144 comprises a metal or metal alloy such as spring tempered 304 stainless steel with a predetermined flexibility and resilience, and the trocar support member 146 comprises a metal or metal alloy such as 301 stainless steel with a predetermined hardness. The trocar 144 and trocar support member 146 can be welded together, such as, denoted by weld spots 172, or otherwise attached in other suitable manners, for example molding and the like, as needed or desired.
[00971 The trocar assembly 128 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R13 of the trocar distal curved portion 168 is about 1 inch (which generally conforms to the implant's radius of curvature and may prevent implant creep), the diameter D13 is about 0.006 inches (which provides a low tolerance fit within the implant's lumen), the length 143 is about 0.17 inches, the overall unbent lengt, h of the trocar 144 is about 2.3 inches, and the radius of curvature of the trocar distal end tip 170 is in the range from about 0.001 to about 0.003 inches. In various embodiments, the radius of curvature R13 of the trocar distal curved portion 168 can range from 0.4 inches to about 2.2 inches. In one embodiment, the curvature of the distal curved portion 168 is configured to be larger than the diameter of the eye (e.g., larger than 1 inch) in order to maintain pressure against the sclera during the implantation procedure.
[00981 FIG. 16 shows a different view of the trocar trigger 130, in accordance with some embodiments. The ergonomic upper finger or thumb touch portion 148 has a ribbed texture configuration to facilitate its actuation by the operator. The lower main body portion 150 has several features that allow for the operation of the trocar trigger 130.
[00991 The trigger main body portion 150 comprises a slot, cavity, opening or recessed portion 171 which mates with and attaches to a portion of the trocar support member 146 (e.g., clip) thereby effectively coupling and connecting the trocar trigger 130 and the trocar 144. The trigger main body portion 150 may also comprise multiple pins 174 disposed generally symmetrically on either side, which slidably engage the internal structure of the outer housing 122, such as the left and right slots therein (one of which slots is depicted by reference numeral 178b in FIGS. 3 and 4).
101001 The trigger main body portion 150 further comprises slots 176 on each side that respectively receive the reuse prevention structures 134a and 134b (e.g., glue blocks) that are mounted therein. As noted above, and discussed further herein, the glue blocks can be configured to melt, dissolve, or otherwise shrink or disappear and lock the trocar trigger 130 to prevent unapproved use for the safety of the patient.
Other reuse prevention mechanisms may also be used. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.
[0101] The trocar trigger 130 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar trigger 130 comprises a plastic or thermoplastic, such as polyethylene.
[01021 FIG. 17 shows a different view of the removable trigger safety device 132, in accordance with some embodiments. An upper portion 178 is exposed above the outer housing 122 and a lower portion 180 is contained within the outer housing 122. As shown, the trigger safety device 132 can comprise a clip mechanism.
101031 As noted earlier, the trigger safety device 132 is configured to prevent or inhibit undesirable motion of the trocar trigger 130 during packaging, shipping and travel of the implant delivery device 110. The lower portion 180 is engaged with the trocar trigger 130 prior to use of the delively device 110 and, by manipulation of the upper portion 178, the trigger safety device 132 is removed from the delivery device 110 prior to the surgical procedure.
[0104] The trigger safety device 132 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trigger safety device 132 comprises a thermoplastic such as a polycarbonate, for example, Makrolon 2458.
[01051 The delivery device 110 generally comprises, but is not limited to, materials composed of stainless steel, molded plastic and silicone, among others and equivalents thereof.

Methods of Implant Delivery Through Pre-Formed Corneal Incision [0106] FIGS. 18-22 show some steps or acts of a surgical procedure or method of implanting the ocular implant 120 in the suprachoroidal space 34 of the eye 10 using the implant delivery device 110 in accordance with some embodiments.
Given the details in the figures, the surgical method should be self-explanatory;
however some textual description is provided below.
[0107] In some embodiments, a cohesive viscoelastic is added to the anterior chamber, as needed, to maintain intraocular pressure for use of a gonioprism (surgeons may select a cohesive viscoelastic of their preference, including but not limited to, IIealon, Amvisc or Provisc) through the incision created for implant or stent delivery or other surgery (e.g., cataract surgery).
101081 If a gonioprism is used for visualization, the gonioprism is placed on the cornea. A surgical microscope and patient may be positioned to provide clear visualization of the trabecular meshwork on the nasal side of the eye through the gonioprism. The patient's head may be tilted as far as practical away from the surgeon, and the microscope may be tilted toward the surgeon to ensure a proper viewing angle.
[0109] In some embodiments, the anterior chamber angle is inspected using the gonioprism or other visualization member to ensure good visualization at the nasal implant location.
[0110] The implant delivery device 110 is removed from the blister tray and the implant retainer 124 is removed from the implant and trocar tip (e.g., using fine forceps) without disrupting the implant position and taking care that the implant 120 does not slide off the trocar 144.
[0111] The trigger safety device 132 may then be removed, taking care once again that the implant 120 does not slide off the trocar 144, and that the trocar trigger 130 is maintained in the forward position by the operator, and does not slide rearward.
[0112] If required, the anterior chamber can be deepened by injecting additional cohesive viscoelastic into the anterior chamber to aid in chainber maintenance.
The inserter tip can be coated with a small drop of viscoelastic, as required.
[0113] In accordance with some embodiments, the implantation procedure is performed in conjunction with another ophthalmic procedure, such as cataract surgery, and as illustrated in FIG. 18, the delivery instrument 110 with the implant 120 preloaded thereon at a distal portion thereof is introduced or inserted into the anterior chamber 32 through a preexisting or preformed corneal or limbal incision 70. The insertion sleeve 140 extends through the incision 70 and into the anterior chamber 32. The trocar trigger 130 is maintained in the forward position by the operator. The delivery device 110 may be advanced to the papillary margin before replacing the gonioprism onto the eye. In some embodiments, care is taken to avoid contact with the lens 48, cornea 36 and iris 44.
Preloading the implant 120 on the delivery instrument 110 may reduce loading errors and contribute to ease of use.
101141 As illustrated in FIG. 19, the implant 120 may be advanced across the anterior chamber 32 to the anterior chamber angle 50 towards the sclera] spur 62, until the trocar distal end 170 is adjacent the fibrous attachment zone 60. The trocar trigger 130 is maintained in the forward position by the operator. In accordance with some embodiments, the angle of attack 919 is about 15 (degrees), though 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 (degrees) or other attack angles may efficaciously be utilized, as needed or desired. In some embodiments, the delivery device 110 has a built-in configuration or design for a generally downward angle of about 15 ( 5 -10 ) (degrees) at the site of implantation or towards this site.
101151 Next, as illustrated in FIG. 20, the trocar distal tip or end penetrates through the tissue of and/or adjacent the fibrous attachment zone 60 and the implant 120 is advanced until its implantation position has been reached in the suprachoroidal space 34 with a predetermined portion of the implant sleeve 152 extending into the anterior chamber 32. The trocar trigger 130 is maintained in the forward position by the operator. In some embodiments, the trocar distal tip or end 170 is adapted to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space atraumatically. In some embodiments, a generally narrow passage may be created into the suprachoroidal space by gently separating the iris processes away from the scleral spur with the tip 170 of the insertion trocar until the anterior and posterior portions of the scleral spur are substantially fully visible on a limited area e.g., create an approximately 0.5 mm to a maximum of about 1 min width opening. The implant or stent 120 may then be advanced until the anterior surface of the implant or stent is substantially tangent to the posterior margin of the scleral spur.
With finger or thumb firmly on the trocar trigger 130 in the forward position, the trocar/implant are careffilly advanced into the suprachoroidal space until the implant proximal sleeve 152 just passes the scleral spur and enters the suprachoroidal space ¨ in some embodiments, approximately half (or about 0.4 mm to about 0.7 mm) of the implant sleeve 152 remains in the anterior chamber.
101161 In accordance with several embodiments, during implantation or insertion of the implant 120, an obtarator (e.g., trocar 144) extends through the implant or stent lumen 154 to advantageously prevent tissue ingress and lumen clogging during implant insertion (e.g., prior to removal of the trocar 144 from the implant lumen 154).
Moreover, advantageously, and in accordance with several embodiments, a generally rounded, and not sharp trocar or obturator tip or distal end 170 is utilized to glide smoothly down the sclera and prevent any undesirable sticking, scraping and/or attendant wound healing/fibrosis/encapsulation issues, while still being sharp enough to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space atraumatically.
101171 In accordance with some non-limiting embodiments, the outer diameter of the stent or implant 120 is between about 300 gm and 400 p.m (e.g., 350 gm, 360 gm, 375 gm, 380 gm, 390 gm), which can advantageously avoid and/or mitigate any cyclodialysis cleft issues related with implantation. For example, in some embodiments, the delivery device 110 does not create a cyclodialysis cleft substantially larger than the implant 120 itself, and in other embodiments, does not create a cyclodialysis cleft in that the delivery device 110 and implant 120 are delivered through fibrous tissue bands of the ciliary muscle as opposed to dissecting the ciliary muscle from the sclera at the anterior chamber angle.
101181 Next, as illustrated in FIG. 21, the trocar trigger 130 is moved in a rear or proximal direction 182 or position by the operator so that the trocar 144 is retracted from the implant lumen 154 and the suprachoroidal space 34. In some embodiments, once the implant or stent is in position at the proper depth, the trocar trigger button is slid backwards until the implant or stent 120 is released. In accordance with several embodiments, such a backwards movement of the trocar trigger 130 helps to inhibit or prevent deep placement of the stent or implant 120 within the suprachoroidal space.
(Similar configurations can be efficaciously employed in connection with the placement of the implant 220, as needed or desired.) In some embodiments, a backing tube (e.g., insertion sleeve 140) is configured to react against a proximal end of the implant 120 during removal of the trocar 144.

[0119] As illustrated in FIG. 22, the delivery device 110 may then be retracted and the insertion sleeve 140 can be removed from the anterior chamber 32 with the implant 120 remaining within the eye 10 and at least a portion implanted in the suprachoroidal space 34.
[01201 In some embodiments, the operator confirms that the implant is in a proper position (e.g., the proximal end rests in the anterior chamber with an unobstructed inlet) using the operating microscope and gonioprism. The anterior chamber can be irrigated and aspirated with balanced salt solution (BSS) to remove all viscoelastic. If needed, the posterior edge of the incision is pressed down to facilitate substantially complete removal of the viscoelastic. The anterior chamber can then be inflated with saline solution to achieve physiologic pressure, as required.
[01211 In some embodiments, a predetermined curvature of both (or at least one of) the implant 120 and delivery device 110 is provided to desirably keep pressure on the sclera during implantation and prevent "understeer" or choroid penetration. The delivery device 110 can be curved to maintain the implant 120 at the same curvature during the shelf life, which desirably prevents plastic creep and thus maintains the implant's or stent's curvature specification. In one non-limiting embodiment, the curvature is larger than a diameter of the eye (e.g., larger than the I inch) in order to maintain the pressure on the sclera.
Delivery Device for Advancing Implant Through Device-Formed Corneal Incision [0122] FIGS. 23 and 24 show different views of an implant delivery device, inserter or applicator 210, preloaded with an ocular implant 220, in accordance with some embodiments. The delivery device 210 is configured to deliver and position the implant 220 in the suprachoroidal space 34 of the eye 10. In some embodiments, the delivery method is performed via an ab intern procedure. In some embodiments, the implant is delivered through a self-sealing corneal incision (e.g., at or near the limbus) formed by a corneal penetration needle of the delivery device 210. The implant 220 may be preloaded on or within the delivery device 210 (e.g., on an obturator, or trocar, of the delivery device 210) and provided as a kit within a single packaging. In some embodiments, the implant 220 is not preloaded on the delivery device 210 (e.g. not preloaded prior to shipping in the packaging).
[0123] The delivery device 210 can be provided in a sterile packaging for single-use operation. For example, a double polythene bag may be used for sterility purposes, in combination with a blister packaging to facilitate use by the operator while still maintaining safe usage.
[0124J The delivery device 210 is generally elongate in structure, and generally comprises an outer housing and handpiece 222, a removable protective tube 224, a corneal penetration needle assembly 226, a trocar assembly 228, a trocar trigger 230, a pusher tube assembly 328, a pusher tube trigger 330, a trigger safety device 232 and/or two pairs of reuse prevention structures 234a, 234b and 334a, 334b.
101251 The outer housing 222 is similar to the outer housing 122 and encloses various componentry of the delivery device 210 and can comprise two housing portions such as a left housing portion 236a and a right housing portion 236b, which are attached during fabrication of the delivery device 210.
[0126] Selected portions of the outer housing 222 have ergonomic features such as the hand grip area 238a which has a ribbed texture or the like to facilitate manual handling by a surgeon, medical operator or practitioner (a similar hand grip area is provided on the right housing portion 236b). Various internal structures of the outer housing 222 engage the other components of the delivery device 210, as discussed further below.
101271 The outer housing 222 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the outer housing 222 comprises a thermoplastic material, such as medical grade polycarbonate that is gamma stable.
101281 The outer housing 222 can efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the outer housing 222 has a length of about 5.60 inches, though other lengths may also be efficaciously utilized, for example, based on the size of the user's hand (e.g., from about 4 inches to about 8 inches and any length in between).
[01291 The protective cover tube 224 may be removably mounted on a portion of the corneal penetration needle assembly 226 that extends beyond a distal end of the outer housing 222. The protective cover tube 224 may be removed before the delivery device 210 is used. One purpose of the protective cover tube 224 may be to protect the corneal penetration needle assembly 226 and the components therein during packaging, shipping and travel of the implant delivery device 210.

101301 The protective cover tube 224 can efficaciously be fabricated from various suitable materials, as required or desired. Tn one non-limiting embodiment, the protective cover tube 224 comprises a thermoplastic, such as low density polyethylene (LIVE).
101311 The corneal penetration needle assembly 226 generally comprises a corneal penetration needle 240 and a support member 242 (e.g., sleeve) fixedly attached thereto and to the outer housing 222. Optionally, a seal 243 is provided to further protect the inner componentry of the delivery device 210 from undesirable fluid entrance. Distal portions of the corneal penetration needle 240 and support member 242 may be exposed and extend beyond the distal tip of the delivery device 210, while proximal portions of the corneal penetration needle 240 and support member 242 may be contained within the outer housing 222. Portions of the needle 240 may comprise a hydrophilic or hydrophobic coating. The corneal penetration needle assembly 226 is discussed in further detail later herein.
101321 The trocar assembly 228 generally comprises an obturator, or trocar 244 and a trocar support member 246 (e.g., collar) fixedly attached thereto.
The trocar support member 246 is mechanically coupled, connected or attached to the actuatable trocar trigger 230. A substantial distal portion of the trocar 244 extends through the corneal penetration needle 240 (and pusher tube) with a distal end portion also extending through the implant 220. A proximal portion of the trocar 244 and the trocar support member 246 are contained within the outer housing 222. The trocar assembly 228 is discussed in further detail later herein.
[01331 The trocar trigger 230 generally comprises an upper finger or thumb actuatable portion 248 and a lower main body portion 250. The actuatable trigger portion 248 generally extends outside the outer housing 222 while the main body portion 250 is generally contained within the outer housing 222. Before use, the trocar trigger 230 is in a rear position and, when in use, it is utilized to first advance and then retract the trocar 244. The trigger main body portion 250 is mechanically coupled, connected or attached to the trocar assembly 228. The trocar trigger 230 is also mechanically and/or operatively coupled to the pusher tube trigger 330. The trocar trigger 230 is discussed in further detail later herein.
[01341 The pusher tube assembly 328 generally comprises a pusher tube and a pusher tube collar 346 fixedly attached thereto. The pusher tube collar 346 is mechanically coupled, connected or attached to the actuable pusher tube trigger 330. A
substantial portion of the distal portion of the pusher tube 344 extends through the insertion needle 340, with a distal end being positioned proximal of the implant 220. A
proximal portion of the pusher tube 344 and the pusher tube collar 346 are contained within the outer housing 222. The pusher tube assembly 328 is discussed in further detail later herein.
101351 The pusher tube trigger 330 generally comprises an upper portion 348 distally proximate to the upper finger or thumb actuable trocar trigger portion 248 and a lower main body portion 350. The upper portion 348 generally extends outside the housing 222 while the main body portion 350 is generally contained within the housing 222. Before use, the pusher tube trigger 330 is in a rear position and, when in use, it is utilized to advance the pusher tube 344 (and the implant 220). The trigger main body portion 350 is mechanically coupled, connected or attached to the pusher tube device 328.
The pusher tube trigger 330 is also mechanically and/or operatively coupled to the trocar trigger 230. The pusher tube trigger 330 is discussed in further detail later herein.
101361 The trigger safety member 232 (e.g., clip) may be removable and positioned generally forwardly with respect to the pusher tube trigger 330.
The trigger safety member 232 is mechanically coupled or engaged with the pusher tube trigger 330.
In some embodiments, the trigger safety member 232 inhibits undesirable motion of the pusher tube trigger 330 and the trocar trigger 230 during packaging, shipping and travel of the implant delivery device 210. The trigger safety member 232 may be substantially the same in structure as the trigger safety device 132 discussed above.
[01371 The reuse prevention structures 234a, 234b and 334a, 334b may be mounted on each side of the trocar trigger 230 and the pusher tube trigger 330 respectively, and within the outer housing 222. The reuse prevention structures 234a, 234b and 334a, 334b advantageously provide a safety function to disallow reuse of the delivery device 210 so as to prevent any cross-contamination between unauthorized reuse of the single use device 210. In some embodiments, the reuse prevention structures 234a, 234b and 334a, 334b comprise glue blocks or preforms that are adapted to melt or dissolve when any unapproved re-sterilization of the delivery device 210 is attempted and lock or jam the trocar trigger 230 and the pusher tube trigger 330 so that their movement is thwarted. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.

[01381 The implant 220 has an implant body 251 with a proximal sleeve and is located within a distal end portion of the insertion needle 240 when the delivery device 210 is loaded with the implant prior to packaging and storage or before use. The implant 220 is substantially the same in structure as the implant 120 discussed above.
[01391 FIGS. 25-40 show different views of the insertion or corneal penetration needle assembly 226 and insertion or corneal penetration needle 240 in accordance with some embodiments. The insertion needle 240 is a generally elongated tubular structure with a lumen 262 extending therethrough and a distal curved or non-linear portion 264 to desirably facilitate ab intern suprachoroidal implantation. The insertion needle 240 has a distal end cutting tip 265 which allows corneal penetration by the device to desirably form a self-sealing incision in the cornea (e.g., at or adjacent the limbus). The cutting tip 265 is advantageously sized, shaped and dimensioned to form such a self-sealing incision.
[0140] The insertion needle support 242 is an elongated member through which a portion of the needle 240 extends and is attached thereto. The insertion needle support 242 may include a collar 266 that mates with a corresponding portion of the outer housing 222 to fixedly attach these structures.
[01411 A seal 243 is mounted on a proximal end portion of the insertion needle 240. The seal 243 may advantageously protect the inner componentry of the delivery device 210 from undesirable fluid entrance and may engage an internal structure of the delivery device 210 and/or housing 222. The insertion or corneal penetration needle 240 may comprise a hydrophilic or hydrophobic coating along at least a portion of its length.
[0142] The insertion needle 240 receives a portion of the pusher tube 344 that passes through the needle lumen 262 and contains the preloaded implant 220 distal of the pusher tube 344, which in turn receives a portion of the trocar 244. The needle distal curved or non-linear portion 264 advantageously provides proper curvature and alignment of the trocar 244 and the implant 220 for suprachoroidal implantation.
[01431 The insertion needle assembly 226 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the insertion sleeve 240 and support member 242 comprise stainless steel and are welded (spot or continuous) to form the assembly, and the seal 243 can comprise silicone or the like. The insertion or corneal penetration needle 240 can efficaciously comprise 25 5 gauge hypodermic tubing, as required or desired, including, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 gauge.
[0144] The insertion needle assembly 226 can efficaciously be dimensioned in various suitable marmers, as required or desired. In one non-limiting embodiment, the length L251 is about 1.22 inches, the curved length L252 is about 0.3 inches, the diameter D25 is about 0.02 inches, the radius of curvature R25 is about 1 inch, and the width W26 is about 0.031 inches. The radius of curvature R25 can have the same or substantially the same radius of curvature as the trocar 244. In some embodiments, the curvature of the insertion needle assembly 226 is adapted to be larger than a diameter of the eye (e.g., greater than 1 inch) to, for example, maintain pressure on the sclera during a delivery or implantation procedure.
[0145] MS. 31 and 32 show different views of the trocar device or assembly 228, in accordance with some embodiments. The obturator, or trocar 244 is a generally elongated structure with a curved or non-linear distal portion 268 with a distal-most end 270 that is configured to optimally penetrate ocular tissue so as to access the suprachoroidal space 34.
[0146] The trocar 244 extends through the trocar support member 246, which is configured to engage the trocar trigger 230, and be advanceable and retractable on actuation of the trigger 230. The curved distal portion 268 has a predetermined curvature to allow a proper angle of attack to penetrate ocular tissue to provide access for implantation of the implant 220 in the suprachoroidal space 34.
[0147] More particularly, a collar portion 247 of the trocar support member 246 is mechanically engaged, coupled, connected or fixedly attached to a recessed portion of the trocar trigger 230. Thus, actuation, advancement or retraction of the trocar trigger 230 results in movement, advancement and retraction of the trocar 244.
[0148] The trocar assembly 228 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar 244 comprises a metal or metal alloy such as spring tempered 304 stainless steel with a predetermined flexibility and resilience, and the trocar support member 246 comprises a metal or metal alloy such as 303 stainless steel with predetermined properties. The trocar 244 and trocar support member 246 (e.g., collar) can be welded together (spot or continuous welding), or otherwise attached in other suitable manners, for example molding and the like, as needed or desired.

101491 The trocar assembly 228 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R32 of the trocar distal curved portion 268 is about 1 inch (which generally conforms to the needle's, pusher tube's and implant's radius of curvature and prevents implant creep and disorientation), the diameter D32 is about 0.006 inches (which provides a low tolerance fit within the implant's lumen), the curved length L321 is about 0.67 inches, the length L322 is about 2.1 inches, the overall unbent length of the trocar 244 is about 3.15 inches, the radius of curvature of the trocar distal end tip 270 is in the range from about 0.001 to about 0.003 inches, and the dimension H32 is about 0.22 inches. In various embodiments, the radius of curvature R32 of the trocar distal curved portion 268 can range from 0.4 inches to about 2.2 inches. In some embodiments, the curvature of the distal curved portion 268 is adapted be slightly larger than a diameter of the eye (e.g., larger than 1 inch) to, for example, maintain pressure on the sclera during the delivery or implantation procedure. It should be appreciated, that the above non-limiting dimensions can involve that at least the trocar dimensions H32, R32 and/or L321 (or other related dimensions) can reflect an after "bend" manufacturing or fabrication process or step that has been performed or implemented on the trocar 244.
101501 FIG. 33 shows a different view of the trocar trigger 230, in accordance with some embodiments. The ergonomic upper finger or thumb touch portion 248 has a ribbed texture configuration to facilitate its actuation by the operator. The lower main body portion 250 has several features that allow for the operation of the trocar trigger 230.
[01511 The trigger body portion 250 comprises a slot, cavity, opening or recessed portion 271 which mates with and attaches to a portion of the trocar collar portion 247 thereby effectively coupling and connecting the trigger 230 and the trocar 244. The trigger body portion 250 may also comprise multiple pins 274 disposed generally symmetrically on either side which slidably engage the internal structure of the housing 222 such as the left and right slots therein, one of which slots is depicted by reference numeral 278b in FIG. 24.
101521 The trigger body portion 250 may further comprise slots 276 on each side which respectively receive the reuse prevention structures 234a and 234b that are mounted therein. The reuse prevention structures (e.g., glue blocks or preforms) may be configured to melt or otherwise dissolve or degrade and lock the trocar trigger 230 to prevent unapproved use for the safety of the patient. In some embodiments, a hot melt adhesive is used to freeze the trigger mechanism and prevent use after autoclave.
[0153J The trocar trigger 230 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the trocar trigger 230 comprises a plastic or thermoplastic, such as polyethylene.
[01541 FIGS. 34 and 35 show different views of the pusher tube assembly 328, in accordance with some embodiments. The pusher tube 344 is a generally elongated structure with a curved or non-linear distal portion 368.
101551 The pusher tube 344 extends from the pusher tube support member 346 that is configured to engage the pusher tube trigger 330, and be advanceable on actuation of the trigger 330, and desirably be lockable thereafter, in some embodiments.
The curved distal portion 368 may have a predetermined curvature to allow a proper angle of attack for the trocar 244 to penetrate ocular tissue to provide access for implantation of the implant 220 in the suprachoroidal space 34. The predetermined curvature may be configured to match the curvature of the sclera.
[01561 More particularly, a collar portion 347 of the pusher tube collar 346 mechanically engages, couples, connects or fixedly attaches to a recessed portion of the pusher tube trigger 330. Thus, actuation and advancement of the pusher tube trigger 330 results in movement and advancement of the pusher tube 344.
101571 The pusher tube assembly 328 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the pusher tube 344 comprises nitinol tubing, and the pusher tube collar 346 comprises nitinol bar stock. The pusher tube 344 and collar 346 can be welded together (spot or continuous welding), or otherwise attached in other suitable manners, for example molding and the like, as needed or desired.
[01581 The pusher tube assembly 328 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R35 of the pusher tube distal curved portion 368 is about 1 inch (which generally conforms to the needle's, trocar's and implant's radius of curvature and prevents implant creep and disorientation), the diameter D35 is about 0.014 inches (which provides a low tolerance fit within the needle's lumen), the curved length L351 is about 0.5 inches, the length L352 is about 2.1 inches, and the overall unbent length of the pusher tube 344 is about 2.57 inches. In various embodiments, the radius of curvature R35 of the pusher tube distal curved portion 368 can range from 0.4 inches to about 2.2 inches. In some embodiments, the curvature of the pusher tube distal curved portion 368 is adapted to be slightly larger than a diameter of an eye (e.g., greater than I inch), for example, maintain pressure on the sclera during the delivery or implantation procedure.
It should be appreciated, that the above non-limiting dimensions can involve that at least the pusher tube dimensions L35 and/or R35 (or other related dimensions) can reflect an after "bend"
manufacturing or fabrication process or step that has been performed or implemented on the pusher tube 344.
101591 FIG. 36 shows a different view of the pusher tube trigger 330, in accordance with some embodiments. The upper trigger portion 348 is distally disposed of the trocar trigger portion 248 and actuable with movement of the same. The lower main body port-ion 350 has several features that allow for the operation of the pusher tube trigger 330.
[0160] The trigger main body portion 350 may comprise a slot, cavity, opening or recessed portion 371 that mates with and attaches to a portion of the pusher tube collar portion 347, thereby effectively coupling and connecting the trigger 330 and the pusher tube 344. The trigger body portion 350 may also comprise multiple pins 374 disposed generally symmetrically on either side that slidably engage the internal structure of the housing 222 such as the left and right slots therein (one of which slots is depicted by reference numeral 278b in FIG. 24.) [01611 The trigger main body portion 350 may further comprise slots 376 on each side which respectively receive the reuse prevention structures 334a and 334b that are mounted therein. The reuse prevention structures 334a and 334b are adapted to prevent unapproved use for the safety of the patient.
[0162] The pusher tube trigger 330 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the pusher tube trigger 330 comprises a plastic or thermoplastic such as polyethylene.
[0163] FIG. 37 is a detailed view illustrating the attachment or mating between the trocar assembly 228 and the trocar trigger 230 and the attachment or mating between the pusher tube device 328 and the pusher tube trigger 330. In particular, the trocar device collar portion 247 engages and is received within the trocar trigger recessed portion 271 and the pusher tube collar portion 347 engages and is received within the pusher tube trigger recessed portion 371, thereby operatively coupling the trocar 244 with its trigger 230 and the pusher tube 344 with its trigger 330.
[01641 FIGS. 38A and 38B illustrate certain non-limiting dimensions based on the positions of the trocar trigger 230 and the pusher tube trigger 330 in connection with, in some embodiments, the ocular implant 220. In FIG. 38A, which also shows the implant 220 loaded, both the trocar and pusher tube triggers and are in the forward position, and in a non-limiting embodiment the length 1,381 is about 0.002 inches. In FIG.
38B, the pusher tube trigger 330 is in a generally fully forward position, and in some embodiments locked, as needed or desired, and the trocar trigger 230 is retracted, and in a non-limiting embodiment the length 1,382 is about 0.064 inches.
[01651 The delivery device 210 generally comprises, but is not limited to, materials composed of stainless steel, molded plastic and nitinol, among others and equivalents thereof.
Methods of Implant Delivery Thronahtee-Fortned Corneal Incision [01661 FIGS. 39-44 illustrate steps or acts of a surgical procedure or method of implanting the ocular implant 220 in the suprachoroidal space 34 of the eye
10 using the implant delivery or inserter system or device 210 in accordance with some embodiments. Given the details in the figures the surgical method should be self-explanatory, however some textual description is provided below. (Briefly, and in accordance with some embodiments: in FIG. 39 both the triggers 230 and 330 are in a rear position; in FIG. 40 both the triggers 230 and 330 are in a forward position; in FIG.
41 both the triggers 230 and 330 are still or maintained in a generally forward position; in FIG. 42 both the triggers 230 and 330 are still or maintained in a generally forward position; in FIG. 43 the trocar trigger 230 is retracted and/or in a rear position while the pusher tube trigger 330 is in a locked position; and in FIG. 44 the trocar trigger 230 remains in its rear position.) [0167] In some embodiments, a surgical microscope and the patient are positioned to provide a substantially clear visualization of the trabecular meshwork through a gonioprism on the nasal side of the eye. The patient's head can be tilted as far as practical from the surgeon, and the microscope can be tilted toward the surgeon to ensure a proper viewing angle.
[01681 The delivery device 210 is removed from its package. The protective cover tube 224 is carefully removed from the insertion needle and the safety member 232 holding the triggers is removed by the operator taking care that the triggers 230 and 330 are maintained in the rear position.
101691 If a gonioprism is used, the gonioprism is placed on the cornea, and the anterior chamber angle is inspected using the gonioprism to ensure a good visualization at the nasal implant location. The gonioprism is then removed. Other visualization devices may be used or the procedure may be performed without use of a visualization device.
101701 FIG. 39 illustrates formation of a self-sealing incision 370 by the insertion or corneal penetration needle 240, and more particularly, the cutting distal end tip 265 of the needle 240 of the delivery device 210, such that a portion of the needle 240 extends into the anterior chamber 32. At this stage, both the trocar trigger 230 and the pusher tube trigger 330 are maintained in the rear position by the operator.
In some embodiments, a temporal clear corneal incision is made using a sharp cutting tip of the device. If a clear corneal incision has already been made, a cohesive viscoelastic may be used to maintain the anterior chamber before passing the needle 240 through the incision.
[01711 FIG. 40 illustrates forward deployment of the triggers such that the implant 220 is exposed and advanced within the anterior chamber 32 along with the trocar 244 such that the trocar distal end tip 270 extends by a predetermined distance beyond the implant 220. In some embodiments, once the insertion needle enters the eye and is past the pupillary margin, the trocar trigger (and as such the pusher tube trigger 330) are advanced to the fully forward position, thereby exposing the implant or stent 220 and the trocar tip 270.) 101721 As illustrated in FIG. 41, the implant 220 is advanced across the anterior chamber 32 and positioned at the implantation site with the trocar distal end 270 adjacent the fibrous attachment zone 60. At this stage, both triggers are maintained in the forward position by the operator, with the pusher tube trigger 330 desirably locked in position so that the implant 220 cannot be proximally displaced. The angle of attack 041 is about 15 (degrees), though 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 (degrees) or other attack angles may efficaciously be utilized, as needed or desired. In some embodiments, a gonioprism is placed on the cornea, and the trocar/implant are guided across the anterior chamber to the nasal angle. Care is taken to avoid contact with the lens, cornea and iris. The trocar/implant may be advanced to the anterior chamber angle just posterior to the scleral spur. In some embodiments, the delivery device 210 has a built-in configuration or design for a generally downward angle of about 15' 45 40 ) (degrees) at a site of implantation or towards the site of implantation.
101731 Next, as illustrated in FIG. 42, the trocar distal tip or end penetrates through the tissue of and/or adjacent the fibrous attachment zone 60 and the implant 220 is advanced until its implantation position has been reached in the suprachoroidal space 34 with a predetermined portion of the implant sleeve 252 extending into the anterior chamber 32. The trocar trigger 230 is maintained in the forward position by the operator at this stage. In some embodiments, a generally narrow passage is created into the suprachoroidal space by gently separating the iris processes away from the scleral spur with the tip of the insertion trocar until the anterior and posterior portions of the scleral spur are substantially fully visible on a limited area ¨ e.g., create an approximately 0.5 mm to a maximum of about 1 mm width opening. The trocar/implant are continued to be advanced along the posterior margin of the sclera] spur.
With finger or thumb holding the rear/trocar trigger in the forward position, the trocar/implant are carefully advanced into the suprachoroidal space until the implant proximal sleeve just passes the sclera] spur and enters the suprachoroidal space ¨ in some embodiments, approximately half (or about 0.4 mm to about 0.7 mm) of the implant sleeve remains in the anterior chamber.
101741 In accordance with several embodiments, during implantation or insertion of the implant 220 the trocar, or obturator, 244 extends through the implant or stent lumen 154 to advantageously prevent tissue ingress and lumen clogging during implant insertion (prior to removal of the trocar, or obturator, 244 from the implant lumen 154).
101751 =Next, as illustrated in FIG. 43, the trocar trigger 230 is moved in a rear or proximal direction 282 by the operator so that the trocar 244 is retracted from the implant lumen and the suprachoroidal space 34. In some embodiments, once the implant or stent 220 is in position at the proper depth, the trocar trigger button is slid backwards until the implant or stent 220 is released. 'The backwards movement of the trocar trigger 230 may advantageously prevent or inhibit over-insertion of the implant 220.
In some embodiments, a backing tube is configured to react against a proximal end of the implant 220 during removal of the trocar 244.
101761 As illustrated in FIG. 44, the delivery device 210 is retracted and the insertion needle 240 is removed from the anterior chamber 32 with the implant remaining within the eye 10 and implanted in the suprachoroidal space 34. In some embodiments, the incision 270 desirably self-seals to facilitate quick recovery without requiring sutures.
101771 In some embodiments, the operator confirms that the implant is in a proper position (e.g., the proximal end rests in the anterior chamber with an unobstructed inlet) using the operating microscope and gonioprism. The anterior chamber can be irrigated and aspirated with balanced salt solution (BSS) to remove all viscoelastic, if used. If needed, the posterior edge of the incision is pressed down to facilitate substantially complete removal of the viscoelastic, if used. The anterior chamber can then be inflated with saline solution to achieve physiologic pressure, as required.
101781 In some embodiments, a predetermined curvature of both (or at least one of) the implant or stent 220 and delivery device 210 is provided to desirably keep pressure on the sclera during implantation and prevent "understeer" or choroid penetration. The delivery device 210 can be curved to maintain the implant or stent 220 at the same curvature during the shelf life which desirably prevents plastic creep and thus maintain the implant's or stent's curvature specification. In one non-limiting embodiment, the curvature is larger than a diameter of the eye (e.g., larger than a 1 inch diameter) in order to maintain the pressure on the sclera.
101791 In some embodiments, the pusher tube 344 is configured to react against a proximal end of the implant or stent 220 during trocar or obturator removal.
Advantageously, the "lazy" curve or curvature of the needle 240 and/or substantially the entire system 210 (see, e.g., FIGS. 39 to 44) maintains, in accordance with some embodiments, about a 15 angle at the implantation site, though 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 (degrees) or other angles may efficaciously be utilized, as needed or desired.
101801 Moreover, in accordance with some embodiments, the needle 240 advantageously traverses across the eye (finite height anterior chamber clearance) without contacting the iris or cornea. In some embodiments, the implant or stent 220 is maintained at its specified, predetermined or required or desired curvature throughout substantially its shelf life, for example, to prevent plastic creep.
Drugs and Therapeutic Agents [0181] In some embodiments, the implants disclosed herein can provide for delivery of a therapeutic agent or drug. 'The therapeutic agent can be, for example, an intraocular pressure-lowering drug. In some embodiments, the therapeutic agent or drug is introduced concurrently with the delivery of the shunt to the eye. The therapeutic agent or drug can be part of the implant itself. For example, the therapeutic agent or drug can be embedded in the material of the shunt, or coat at least a portion of the implant. The therapeutic agent or drug may be present on various portions of the implant.
For example, the therapeutic agent or drug may be present on the distal end of the implant, or the proximal end of the implant. The implant can include combination of therapeutic agents or drugs. The different therapeutic agents or drugs can be separated or combined.
One kind of therapeutic agent or drug can be present at the proximal end of the implant, and a different kind of therapeutic agent or drug can be present at the distal end of the implant. For example, an anti-proliferative agent may be present at the distal end of the implant to prevent growth, and a growth-promoting agent may be applied to the proximal end of the implant to promote growth.
10182] Examples of drugs may include various anti-secretory agents;
antimitotics and other anti-proliferative agents, including among others, anti-angiogenesis agents such as angiostatin, anecortave acetate, thrombospondin, VEGF receptor tyrosine kinase inhibitors and anti-vascular endothelial growth factor (anti-VEGF) drugs such as ranibizumab (LUCENTIS ) and bevacizumab (AV AS-11Ne), pegaptanib (MACUGENg), sunitinib and sorafenib and any of a variety of known small-molecule and transcription inhibitors having anti-angiogenesis effect (additional non-limiting examples of such anti-VEGF compounds are described in Appendix A, which is attached herewith and made a part of this application); classes of known ophthalmic drugs, including: glaucoma agents, such as adrenergic antagonists, including for ex.am.ple, beta-blocker agents such as atenolol, propranolol, metipranolol, betaxolol, carteolol, levobetaxolol, levobunolol and timolol; adrenergic agonists or sympathomimetic agents such as epinephrine, dipivefrin, clonidine, aparclonidine, and brimonidine;
parasympathomimefics or cholingeric agonists such as pilocarpine, carbachol, phospholine iodine, and physostigmine, salicylate, acetylcholine chloride, eserine, diisopropyl flu.orophosphate, demecarium bromide); muscarinics; carbonic anhydrase inhibitor agents, including topical and/or systemic agents, for example acetozolamide, brinzolamide, dorzolamide and methazolamide, ethoxzolamide, diamox, and dichlorphenainide; mydriatic-cycloplegic agents such as atropine, cyclopentolate, succinylcholine, homatropine, phenylepluine, scopolamine and tropicamide;

prostaglandins such as prostaglandin F2 alpha, antiprostaglandins, prostaglandin precursors, or prostaglandin analog agents such as bimatoprost, latanoprost, travoprost and tmoprostone.
10183] Other examples of drugs may also include anti-inflammatory agents including for example glucocorticoids and corticosteroids such as betametha.sone, cortisone, dexamethasone, dex.amethasone 2 1-phosphate, methylprednisol one, prednisolone 21-phosphate, prednisolone acetate, prednisolone, fluorometholone, loteprednol, mediysone, fluocinolone acetonide, triamcinolone acetonide, triamcinolone, beclom.ethasone, budesonide, flunisolide, fluticasone, hydrocortisone, hydrocortisone acetate, loteprednol, rimexolone and non-steroidal anti-inflammatory agents including, for example, diclofenac, flurbiprofen, ibuprofen, bromfenac, nepafenac, and ketorolac, salicylate, indomethacin, ibuprofen, naxopren, piroxicam and nabumetone; anti-infective or antimicrobial agents such as antibiotics including, for example, tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, cephalexin, oxytetracycline, chloramphenicol, rifampicin, ciprofloxacin, tobramycin, gentamycin, erythromycin, penicillin, sulfonamides, sulfadiazine, sulfacetamide, sulfamethizole, sulfisoxazole, nitrofurazone, sodium propionate, aminoglycosides such as gentamicin and tobramycin; fluoroquinolones such as ciprofloxacin, gatiflox.acin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin; bacitracin, erythromycin, fusidic acid, neomycin, polymyxin B, gramicidin, trimethoprim and sulfacetamide; antifungals such as amphotericin B and miconazole; antivirals such as idoxuridine til.fluorothymidine, acyclovir, gancyclovir, interferon; antimicotics; immune-modulating agents such as antiallergenics, including, for example, sodium chromoglycate, antazoline, methapyriline, chlorpheniramine, cetrizine, pyrilamine, prophenpyridamine; anti-histamine agents such as azelastine, emedastine and levocabastine; immunological drugs (such as vaccines and immune stimulants); MA.ST cell stabilizer agents such as cromolyn sodium, ketotifen, lodoxamide, nedocrimil, olopatadine and pemirolastciliary body ablative agents, such as gentimicin and cidofovir; and other ophthalmic agents such as verteporfm, proparacaine, tetracaine, cyclosporine and pilocarpine; inhibitors of cell-surface glycoprotein receptors;
decongestants such as phenylephrine, naphazoline, tetrahydrazoline; lipids or hypotensive lipids; dopaminergic agonists and/or antagonists such as quinpirole, fenoldopam, and ibopamine; vasospasm inhibitors; vasodilators;
antihypertensive agents;
angiotensin converting enzyme (ACE) inhibitors; angiotensin-1 receptor antagonists such as olmesartan; microtubule inhibitors; molecular motor (dynein and/or kinesin) inhibitors; actin cytoskeleton regulatory agents such as cyetchalasin, latrunculin, swinholide A, ethacrynic acid, 11-7, and Rho-kinase (ROCK) inhibitors;
remodeling inhibitors; modulators of the extracellular matrix such as tert-butylhydro-quinolone and AL-3037A; adenosine receptor agonists and/or antagonists such as N-6-cylclophexyladenosine and (R)-phenylisopropyladenosine; serotonin agonists;
hormonal agents such as estrogens, estradiol, progestational hormones, progesterone, insulin, calcitonin, parathyroid hormone, peptide and vasopressin hypothalamus releasing factor;
growth factor antagonists or growth factors, including, for example, epidermal growth factor, fibroblast growth factor, platelet derived growth factor or antagonists thereof, transforming growth factor beta, somatotrapin, fibronectin, connective tissue growth factor, bone morphogenic proteins (BMPs); cytokines such as interleukins, CD44, cochlin, and serum amyloids, such as serum amyloid A.
10184] Other therapeutic agents may include neuroprotective agents such as lubezole, nimodipine and related compounds, and including blood flow enhancers such as dorzolamide or betaxolol; compounds that promote blood oxygenation such as erythropoeitin; sodium channels blockers; calcium channel blockers such as nilvadipine or lomerizine; glutamate inhibitors such as memantine nitromemantine, riluzole, dextromethotphan or agmatine; acetylcholinsterase inhibitors such as galantamine;
hydroxylamines or derivatives thereof, such as the water soluble hydroxylamine derivative OT-440; synaptic modulators such as hydrogen sulfide compounds containing flavonoid glycosides and/or topenoids, such as ginkgo biloba; neurotrophic factors such as glial cell-line derived neutrophic factor, brain derived neurotrophic factor; cytokines of the 1L-6 family of proteins such as ciliary neurotrophic factor or leukemia inhibitory factor; compounds or factors that affect nitric oxide levels, such as nitric oxide, nitroglycerin, or nitric oxide synthase inhibitors; carmabinoid receptor agonsists such as W1N55-212-2; free radical scavengers such as methoxy-polyethylene glycol thioester (MPDTE) or methoxypolyethlene glycol thiol coupled with EDTA methyl triester (MPSEDE); anti-oxidants such as astaxathin, dithiolethione, vitamin E, or metallocorroles (e.g., iron, manganese or gallium corroles); compounds or factors involved in oxygen homeostasis such as neuroglobin or cytoglobin; inhibitors or factors that impact mitochondrial division or fission, such as Mdivi-1 (a selective inhibitor of dynamin related protein 1 (Drpl)); kinase inhibitors or modulators such as the Rho-kinase inhibitor H-1152 or the tyrosine kinase inhibitor AG1478; compounds or factors that affect integrin function, such as the Beta 1-integrin activating antibody HUTS-21; N-acyl-ethanaolamines and their precursors, N-acyl-ethanolamine phospholipids;
stimulators of glucagon-like peptide 1 receptors (e.g., glucagon-like peptide 1);
polyphenol containing compounds such as resveratrol; chelating compounds;
apoptosis-related protease inhibitors; compounds that reduce new protein synthesis;
radiotherapeutic agents; photodynamic therapy agents; gene therapy agents;
genetic modulators; auto-immune modulators that prevent damage to nerves or portions of nerves (e.g., demyelination) such as glatimir; myelin inhibitors such as anti-NgR
Blocking Protein, NgR(310)ecto-Fc; other immune modulators such as FK506 binding proteins (e.g., FKBP51); and dry eye medications such as cyclosporine A, delmulcents, and sodium hyaluronate.
10185] Other therapeutic agents that may be used include: other beta-blocker agents such as acebutolol, atenolol, bisoprolol, carvedilol, asmolol, labetalol, nadolol, penbutolol, and pindolol; other corticosteroidal and non-steroidal anti-inflammatory agents such aspirin, betamethasone, cortisone, diflunisal, etodolac, fenoprofen, fludrocortisone, fluxbiprofen, hydrocortisone, ibuprofen, indomethacine, ketoprofen, meclofenamate, mefen.amic acid, meloxicam, methylprednisolone, nabumetone, naproxen, oxaprozin, prednisolone, prioxicam, salsalate, sulindac and toimetin; COX-2 inhibitors like celecoxib, rofecoxib and. Valdecoxib; other immune-modulating agents such as aldesleukin, adalimumab (HUMIRA.g), azathioprine, ba.siliximab, daclizumab, etanercept (ENBREIA), hydroxychloroquine, infliximab (REMICADEO), leflunomide, methotrexate, mycophenolate mofetil, and sulfasalazine; other anti-histamine agents such as loratadine, desloratadine, cetirizine, diphenhydramine, chlorpheniramine, dexchloipheniramine, clemastine, cyproheptadine, fexofenadine, hydroxyzine and promethazine; other anti-infective agents such as aminoglycosides such as amikacin and streptomycin; anti-fimgal agents such as amphotericin B, caspofungin, clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole, terbinafine and nystatin; anti-malarial agents such as chloroquine, atovaqu.one, mefloquine, primaquine, quinidine and quinine; anti-mycobacterium agents such as ethambutol, isoniazid, pyrazinamide, rifampin and rifabutin; anti-parasitic agents such as albendazole, mebendazole, thiobendazole, metronidazole, pyrantel, atovaquone, iodoquinaol, ivermectin, paromycin, praziquantel, and trimatrexate; other anti-viral agents, including anti-CMV or anti-herpetic agents such as acyclovir, cidofovir, famcielovir, gangeiclovir, valacyclovir, valganciclovir, vidarabine, trifluridine and foscarnet; protease inhibitors such as ritonavir, saquinavir, lopinavir, indinavir, atazanavir, amprenavir and nelfinavir;
nucleotidelnucleoside/non-nucleoside reverse transcriptase inhibitors such as abacavir, ddi, 3TC, d4T, ddC, tenofovir and emtricitabine, delavirdine, efavirenz and nevirapine;
other anti-viral agents such as interferons, ribavirin and trifluridiene;
other anti-bacterial agents, including cabapenems like eitapenem, imipenem and meropenem;
cephalosporins such as cefadroxil, cefazolin, cefdinir, cefditoren, cephalexin, cefaclor, cefepime, cefoperazone, cefotaxime, cefotetan, cefoxitin, cefpodoxime, cefprozil, ceftaxidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime and loracarbef; other macrolides and ketolides such as azithromycin, clarithromycin, dirithromycin and telithromycin;
penicillins (with and without clavulanate) including amoxicillin, ampicillin, pivampicillin, dieloxacillin, nafcillin, oxacillin, piperacillin, and ticarcillin; tetracyclines such as doxycycline, minocycline and tetracycline; other anti-bacterials such as aztreonam, chloramphenicol, clindamycin, linezolid, nitrofurantoin and vancomycin;
alpha blocker agents such as doxazosin, prazosin and terazosin; calcium-charmel blockers such as amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nisoldipine and veraparnil; other anti-hypertensive agents such as clonidine, diazoxide, fenoldopan, hydralazine, minoxidil, nitroprusside, phenoxyben.zamine, epoprostenol, tolazoline, treprostinil and nitrate-based agents; anti-coagulant agents, including heparins and heparinoids such as heparin., dalteparin, enox.aparin, tinzaparin and fondaparinux.;
other anti-coagulant agents such as hirudin, aprotinin, argatroban, bivalirudin, desirudin, lepirudin, warfarin and ximelagatran; anti-platelet agents such as abciximab, clopidogrel, dipyridamole, optifibatide, ticlopidine and tirofiban; prostaglandin PDE-5 inhibitors and other prostaglandin agents such as alprostadil, carboprost, sildenafil, tadalafil and vardenafil; thrombin inhibitors; antithrombogenic agents; anti-platelet aggregating agents; thrombolytic agents and/or fibrinolytic agents such as alteplase, anistreplase, reteplase, streptokinase, tenecteplase and urokinase; anti-proliferative agents such as sirolimus, tacrolimus, everolimus, zotarolimus, paclitaxel and mycophenolic acid;
hormonal-related agents including levothyroxine, fluoxymestrone, methyltestosterone, nandrolone, oxandrolone, testosterone, estradiol, estrone, estropipate, clomiphene, gonadotropins, hydroxyprogesterone, levonorgestrel, medroxyprogesterone, megestrol, mifepiistone, norethindrone, oxytocin, progesterone, raloxifene and tamoxifen;
anti-neoplastic agents, including alkylating agents such as carrnu.stine lomustine, melphalan, cisplatin, fluorouraci13, and procarbazine antibiotic-like agents such as bleomycin, daunorubicin, doxorubicin, idarubicin, mitomycin and plicamycin; anti proliferative agents (such as 1,3-cis retinoic acid, 5-fluorouracil, taxol, rapamycin, mitomycin C and cisplatin); antimetabolite agents such as cytarabine, fludarabine, hydroxyurea, mercaptopurine and 5-fluorouracil (5-F1.1); immune modulating agents such as aldesleukin, imatinib, rituximab and tositumomab; mitotic inhibitors docetaxel, etoposide, vinblastine and vincristine; radioactive agents such as strontium-89; and other anti-neoplastic agents such as irinotecan, topotecan and mitotarie.
101861 In some embodiments, the therapeutic agent is delivered through the implant to the desired location in the eye, such as the suprachoroidal space of the uveoscleral outflow pathway. In some embodiments, the therapeutic agent is delivered to the suprachoroidal space of the uveoscleral outflow pathway in combination with a therapeutic agent delivered via trans pars plaria vitrectomy, thereby delivering a therapeutic agent to both sides of the retina. In some embodiments, the implant can improve access of topical medication to the posterior uvea. In some embodiments, the implant is used to deliver a topical medication to treat a chorio-retinal disease.
101871 In some embodiments, the delivery device 110 provides implantation through a preformed or prior corneal incision while the delivery device 210 does so through a self-created and self-sealing incision such that a "closed chamber"
operation is performed.
101881 The delivery device 110 is configured, in some embodiments, so that the implant is supported on a trocar wire or obturator in an exposed configuration. In some embodiments, the delivery device 210 supports the implant on a trocar wire or obturator within an insertion or corneal penetration needle.
101891 In some embodiments, the delivery device 110 comprises a silicone retainer to hold the implant in place during travel. The delivery device 210, in some embodiments, incorporates a curved delivery system that provides adequate side loads and friction to hold the implant in place during travel and shipping.
[0190] The delivery device 110, in certain embodiments, employs a single trigger operation to release the implant. The delivery device 210, in accordance with some embodiments, utilizes a dual trigger operation to expose and release the implant trocar and implant pusher tube triggers. Once the insertion needle penetrates the cornea, both triggers advance to expose the implant or stent and the trocar and obturator. The front pusher tube trigger locks the pusher tube in a forward position, thereby preventing the implant or stent from retracting back into the needle. After implant or stent implantation, the rear trocar trigger is retracted to retract the trocar and release the implant or stent.
[0191] It should be appreciated, in accordance with some embodiments, that the disclosed implant is prevented from backward movement based advantageously on the delivery device configuration. For example, the implant 120 is prevented from backward movement because of the insertion sleeve's distal end relative dimensioning and the implant 220 is prevented from backward movement because of pusher tube's distal end relative dimensioning.
[01921 Moreover, because of the material properties of the disclosed trocars, creep during shelf life should advantageously not be an issue of concern.
Also, in accordance with some embodiments, given that the implants and trocars are asymmetrically curved, this orientation as packaged, prevents any undesirable rotation of the implants with respect to the trocars even when in use. Furthermore, in accordance with some embodiments, at least the implants and trocars have predetermined curvatures which, because of their selected flexibility, can conform to the particular space or ocular location they are inserted or advanced into.
101931 In some embodiments, the delivery device 110 is configured for use in combination with another ocular surgery, such as cataract surgery. The delivery device 110 can include a preloaded implant 120 and have a pre-curved tip. The device advantageously may have an ergonomic handpiece.
[0194] In some embodiments, the delivery device 210 is configured for stand-alone, in-office surgery without being performed in conjunction with other ocular surgery (e.g., cataract surgery). The delivery device 210 can include a preloaded implant 220 and can have a pre-curved tip. Also, in some embodiments, the device 210 has integrated corneal penetration and closed chamber capability so as to perform the procedure through a self-sealing incision. The device 210 may advantageously include an ergonomic handpiece. Preloading the implant 220 on the delivery instrument 210 may reduce loading errors and contribute to ease of use.

101951 Certain embodiments provide for the implant, trocar and/or the pusher tube to flex and allow for the implant to conform to the anatomy of the suprachoroidal space.
101961 The delivery device geometries, such as with respect to the attack angle and curvature, can advantageously ensure proper placement of the implant in the suprachoroidal space, supraciliaiy space, or other anatomical space.
101971 In some embodiments, the low friction (e.g., polyethylene on polycarbonate) trigger operation, in accordance with some embodiments, advantageously allows for smooth operation during the delivery procedures. The safety members (e.g., safety clips) may advantageously prevent undesirable trigger motion during shipment and transportation of the delivery devices.

Embodiments of the trocar or obturator material and tip shape provide several advantages which include: use of high temper stainless spring steel;
pointed enough tip to pierce ciliary muscle attachment; rounded enough tip to prevent irritation/tissue damage in suprachoroidal space at sclera/choroid; material and shape allows constant force against sclera during advancement in order to assure proper placement of implant within suprachoroidal space; and trocar curvature generally matches implant or stent shape to prevent plastic creep during shelf life.
Moreover, advantageously, and in accordance with some embodiments, a generally rounded, and not sharp trocar or obturator tip or distal end, e.g. 170 or 270, is utilized to glide smoothly down the sclera and prevent any undesirable sticking, scraping and attendant wound healing/fibrosis/encapsulation issues, while still being sharp enough to dissect and separate the ciliary muscle attachment in order to enter the suprachoroidal space atraumatically.
101991 Also, in accordance with some non-limiting embodiments, the outer diameter of the stent or implant 220 is between about 300 gm and 400 !um (e.g., 350 gm, 360 gm, 375 gm, 380 gm, 390 gm), which can advantageously avoid and/or mitigate any cyclodialysis cleft issues related with implantation. For example, in some embodiments, the delivery device 210 does not create a cyclodialysis cleft substantially larger than the implant 220 itself, and in other embodiments, does not create a cyclodialysis cleft in that the delivery device 210 and implant 220 are delivered through fibrous tissue bands of the ciliary muscle as opposed to dissecting the ciliary muscle from the sclera at the anterior chamber angle.

[0200] With respect to embodiments of the delivery device 210, the curved, flared and coated stainless steel insertion or corneal penetration needle is advantageously shaped to fit anatomically within eye the and avoid iris touch. Also, the tight corneal incision can minimize fluid loss from the eye by forming a substantially closed chamber self¨sealing entry. Moreover, the lowered sliding friction of the needle shaft once in. the eye may advantageously prevent movement during this delicate surgery, and any resultant loss of view during any interoperative gonioscopy.
[0201] In some embodiments, and once again with respect to embodiments of the delivery device 210, the superelastic nitinol pusher tube provides backup support for the implant or stent during implantation, and allows minimal sliding force during trigger operation. Also, in accordance with some embodiments, the polyethylene protective tube prevents damage to the needle tip during shipment.
[0202] The delivery device 210, in accordance with some embodiments, can advantageously be used in a "closed chamber" procedure, which may have one or more of the following advantages: no viscoelastic is required to inflate the anterior chamber; there is minimal loss of fluid from anterior chamber (this reduces chance of hypotony); no separate blade is required to form the corneal incision; results in faster surgery; there is only one time entry into the eye; a safer procedure with less chance or lowered probability for adverse event (e.g., endophthalmitis); and less expensive and more cost effective.
102031 The curved insertion needle, trocar or obturator, and pusher tube of the delivery device 210 also, in certain embodiments allows for retention of the implant or stent shape during its entire shelf life (including during shipping) to prevent creep (such as, loss of implant or stem curvature). Moreover, the closed-cham.ber procedure can allow for enhanced surgical safety in a non-deepened anterior chamber by substantially matching the curvature of the cornea and allowing traversing of the eye in an ab intern procedure.
Terminoloev [0204] Conditional language, for example, among others, "can,"
"could,"
"might," or "may," unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps.

Methods [02051 The methods which are described and illustrated herein are not limited to the sequence of acts described, nor are they necessarily limited to the practice of all of the acts set forth. Other sequences of acts, or less than all of the acts, or simultaneous occurrence of the acts, may be utilized in practicing embodiments of the invention(s).
The methods disclosed herein include certain actions taken by a practitioner;
however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as "forming an incision" include "instructing the formation of an incision."
Ranges [02061 The ranges disclosed herein encompass any and all overlap, sub-ranges, and combinations thereof, as well as individual numerical values within that range. For example, description of a range such as from about 5 to about 30 degrees should be considered to have specifically disclosed subranges such as from 5 to 10 degrees, from 10 to 20 degrees, from 5 to 25 degrees, from 15 to 30 degrees etc., as well as individual numbers within that range, for example, 5, 10, 15, 20, 25, 12, 15.5 and any whole and partial increments therebetween. Language such as "up to," "at least," "greater than," "less than," "between," and the like includes the number recited.
Numbers preceded by a term such as "about" or "approximately" include the recited numbers. For example, "about 10%" includes "10%." For example, the terms "approximately", "about", and "substantially" as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result.
Conclusion [02071 From the foregoing description, it will be appreciated that a novel approach for intraocular pressure control has been disclosed. While the components, techniques and aspects of embodiments of the invention have been described with a certain degree of particularity, it is manifest that many changes may be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
102081 While a number of preferred embodiments of the invention and variations thereof have been described in detail, other modifications and methods of using and medical, diagnostic, research and therapeutic applications for the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applicationsõ modifications, and substitutions may be made of equivalents without departing from the spirit of embodiments of the invention or the scope of the claims.
[02091 Various modifications and applications of the embodiments of the invention may occur to those who are skilled in the art, without departing from the true spirit or scope of the embodiments of the invention, It .should be understood that the invention(s) is not limited to the embodiments set forth herein for purposes of exemplification, but is to be defined only by a fair reading of the appended claim.s, inclu.ding the full range of equivalency to which each element thereof is entitled.

Claims (24)

WHAT IS CLAIMED IS:
1. An ocular implant delivery system comprising:
a delivery device comprising:
a generally elongated outer housing that is ergonomically contoured;
an elongated insertion sleeve partially disposed in the outer housing and having a non-linear exposed distal portion extending out of a distal end of the housing, wherein the non-linear exposed distal portion has a curvature adapted to conform to an anatomical curvature of the eye;
an obturator passing through a lumen of the insertion sleeve and having a non-linear distal portion extending beyond the non-linear distal portion of the insertion sleeve, wherein, in use, the non-linear distal portion of the obturator is adapted to provide access to a suprachoroidal space through a ciliary muscle attachment, wherein the non-linear distal portion of the obturator is flexible and has a curvature adapted to maintain pressure against the sclera during insertion into the suprachoroidal space; and a trigger operatively coupled to the obturator such that movement of the trigger towards a proximal end of the housing retracts the obturator within the insertion sleeve; and an. implant adapted to be disposed on the non-linear portion of the obturator an.d positioned distally of the non-linear distal portion of th.e insertion sleeve prior to insertion of the delivery device into an eye, wherein., in use, a distal end of the insertion sleeve is adapted to react against a proximal end of the implant as the obturator is being retracted to deliver the implant.
2. The system of Claim 1, wherein the insertion sleeve is sized to extend through a corneal incision and into an anterior chamber of the eye.
3. The system of Claim 1, wherein the implant has a curvature which substantially matches the curvature of the non-linear portion of the obturator.
4. The system of Claim 3, wherein a curvature of the non-linear distal portion of the obturator and a curvature of the implant are larger than a diameter of the eye.
5. The system of any preceding claim, wherein, in use, the trigger is manually controlled and held in a forward position, and retracted in a backward motion to cause delivery of the implant once a distal end of the implant has been advanced to a desired location within the suprachoroidal space, wherein the backward motion of the obturator is adapted to prevent against over-insertion of the implant within the suprachoroidal space.
6. The system of any preceding claim, wherein a distal tip of the obturator is rounded so as not to cause scraping of the sclera while still being adapted to provide access to the suprachoroidal space through the ciliary muscle attachment.
7. The system of any preceding claim, wherein the implant is an elongate tube, and wherein an outer diameter of the implant is between 300 and 400 microns.
8. The system of any preceding claim, wherein a distal portion of the implant includes a plurality of circumferential retention members.
9. The system of any preceding claim, wherein a distal tip of the implant is tapered and wherein a proximal end of the implant includes a flange.
10. The system of any preceding claim, wherein the delivery device further comprises reuse prevention structures adapted to prevent reuse of the delivery device.
11. The system of Claim 10, wherein the reuse prevention structures comprise a pair of glue blocks mounted on each side of a trigger of the obturator adapted to m.elt upon sterilization to lock the trigger against further use.
12. The system of any preceding claim, wherein the implant is provided in a kit with the implant preloaded on the obturator.
13. An ocular implant delivery system comprising:
a generally elongated outer housing that is ergonomically contoured;
an. elongated insertion needle partially disposed in the outer housing and having a non-linear exposed distal portion;
an. implant pusher tube extending through a lumen of the elongated insertion needle and having a non-linear distal portion;
an. obturator passing through a lumen of the pusher tube and having a non-linear distal portion;

wherein, in use, the non-linear distal portion of the obturator is adapted to provide access to a suprachoroidal space through a ciliary muscle attachment, wherein the non-linear distal portion of the obturator is flexible and has a curvature adapted to maintain pressure against the sclera during insertion into the suprachoroidal space; and a pusher tube trigger operatively coupled to the pusher tube such that movement of the pusher tube trigger towards a proximal end of the housing retracts the obturator toward the housing, wherein, in use, a distal end of the pusher tube is adapted to react against a proximal end of an implant loaded on to the obturator as the obturator is being retracted within the housing to deliver the implant.
14. The system of Claim 13, wherein the insertion needle is a corneal penetration needle adapted to create a self-sealing corneal incision.
15. The system of Claim 13 or 14, wherein the non-linear portions of the insertion needle, pusher tube and obturator have a substantially matching curvature.
16. The system of Claim 15, further comprising the implant, and wherein the implant has a curvature that substantially conforms to the curvatures of the insertion needle, pusher tube and obturator.
17. The system of any of Claims 13-16, wherein the pusher tube trigger is operatively coupled to a trigger of the obturator.
18. The system of Claim 17, wherein the obturator is advanceable and retractable by actuation of the trigger of the obturator.
19. The system of any of Claims 13-18, wherein, when fully advanced, the pusher tube is locked to prevent further motion.
20. The system of any of Claims 13-19, further comprising reuse prevention structures configured to limit use to a single use.
21. The system. of Claim. 20, wherein the reuse prevention structures comprise a pair of glue blocks mounted on each side of the pusher tube trigger adapted to melt upon sterilization to lock the pusher tube trigger against further use.
22. The system of an.y of Claims 13-21, wherein the insertion needle com.prises a 25 ~ 5 gauge needle.
23. The system. of Claim 16, wherein the implant is provided in a kit with the implant preloaded on the obturator.
24. An ocular implant delivery device, comprising:
a generally elongated outer housing that is ergonomically contoured;
an elongated insertion sleeve partially disposed in the outer housing and having a non-linear exposed distal portion;
a tubular support member surrounding a portion of the elongated insertion sleeve, the tubular support member having a proximal end within the outer housing and a distal end extending outside of the outer housing, wherein the tubular support member is configured to facilitate coupling of the elongated insertion sleeve to the outer housing, and wherein the tubular support member surrounds a portion of the elongated insertion sleeve;
an obturator passing through a lumen of the elongated insertion sleeve and having a non-linear distal portion extending beyond the non-linear exposed distal portion of the elongated insertion sleeve; and a trigger operatively coupled to the obturator such that actuation of the trigger retracts the obturator into the insertion sleeve, thereby causing a proximal end of an implant disposed on the non-linear portion of the obturator to react against a distal end of the insertion sleeve so as to facilitate deployment of the implant from the obturator, wherein the non-linear distal portion of the obturator carrying the implant is configured to be advanced into a suprachoroidal space of an eye, wherein. the non-linear distal portion of the obturator has a curvature configured to be larger than a diameter of the eye.
CA2904068A 2013-03-15 2014-03-12 Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye Active CA2904068C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361790759P 2013-03-15 2013-03-15
US61/790,759 2013-03-15
PCT/US2014/024889 WO2014151070A1 (en) 2013-03-15 2014-03-12 Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye

Publications (2)

Publication Number Publication Date
CA2904068A1 true CA2904068A1 (en) 2014-09-25
CA2904068C CA2904068C (en) 2021-11-09

Family

ID=50487156

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2904068A Active CA2904068C (en) 2013-03-15 2014-03-12 Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye

Country Status (6)

Country Link
US (5) US9592151B2 (en)
EP (1) EP2967993B1 (en)
JP (2) JP6561041B2 (en)
AU (1) AU2014235331B2 (en)
CA (1) CA2904068C (en)
WO (1) WO2014151070A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US7135009B2 (en) 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
JP5748407B2 (en) 2006-11-10 2015-07-15 グローコス コーポレーション Uveal sclera shunt
US20170360609A9 (en) 2007-09-24 2017-12-21 Ivantis, Inc. Methods and devices for increasing aqueous humor outflow
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US8529622B2 (en) 2010-02-05 2013-09-10 Sight Sciences, Inc. Intraocular implants and related kits and methods
EP4302734A3 (en) 2012-03-20 2024-03-20 Sight Sciences, Inc. Ocular delivery systems and methods
CA2868341C (en) 2012-03-26 2021-01-12 Glaukos Corporation System and method for delivering multiple ocular implants
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US20150342875A1 (en) 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
WO2016011056A1 (en) 2014-07-14 2016-01-21 Ivantis, Inc. Ocular implant delivery system and method
WO2016154066A2 (en) 2015-03-20 2016-09-29 Glaukos Corporation Gonioscopic devices
CA3209383A1 (en) * 2015-03-31 2016-10-06 Sight Sciences, Inc. Ocular delivery systems and methods
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
EP4265231A3 (en) 2015-08-14 2023-12-20 Alcon Inc. Ocular implant with pressure sensor
WO2017040853A1 (en) 2015-09-02 2017-03-09 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
JP6647891B2 (en) * 2016-02-03 2020-02-14 哲 浅見 Retinal vessel thrombus removal device
CA3022830A1 (en) 2016-04-20 2017-10-26 Harold Alexander Heitzmann Bioresorbable ocular drug delivery device
US10463532B2 (en) 2016-07-26 2019-11-05 Masatoshi Murata Method for placing implant in choroid that can less invasively and simply place implant in choroid in optic disc-macula area
US10758408B1 (en) * 2016-10-13 2020-09-01 University Of South Florida Tethered eye cannula and method of use
US10674906B2 (en) 2017-02-24 2020-06-09 Glaukos Corporation Gonioscopes
WO2018175268A1 (en) * 2017-03-19 2018-09-27 Biohealthways, Inc. Biodegrading implantable ocular sustained release drug delivery system
EP3638164B1 (en) 2017-06-13 2023-05-10 Innfocus, Inc. Systems and apparatus for treatment of glaucoma
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
CA3070108A1 (en) 2017-07-20 2019-01-24 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
GB201714392D0 (en) 2017-09-07 2017-10-25 Marsteller Laurence Methods and devices for treating glaucoma
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
AU2018346229A1 (en) 2017-10-06 2020-04-30 Glaukos Corporation Systems and methods for delivering multiple ocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
AU2018412569B2 (en) * 2018-03-09 2022-02-03 Aquesys, Inc. Intraocular shunt inserter
WO2019183322A1 (en) * 2018-03-22 2019-09-26 AlphaMed, Inc. Intracanalicular dissolvable punctum plug inserter
WO2020069217A1 (en) 2018-09-28 2020-04-02 Radiance Therapeutics, Inc. Methods, systems, and compositions for maintaining functioning drainage blebs associated with minimally invasive micro sclerostomy
US10722397B2 (en) * 2018-10-24 2020-07-28 New World Medical, Inc. Ophthalmic device
US11273285B2 (en) 2019-02-07 2022-03-15 DePuy Synthes Products, Inc. Ancillary device for detaching implants
CA3125511A1 (en) 2019-02-08 2020-08-13 Curevac Ag Coding rna administered into the suprachoroidal space in the treatment of ophthalmic diseases
JP1654731S (en) * 2019-02-15 2020-03-09
USD959659S1 (en) * 2019-05-10 2022-08-02 DePuy Synthes Products, Inc. Implant release handle
US11925580B2 (en) 2019-06-14 2024-03-12 Iantrek, Inc. Implantable biologic stent and system for biologic material shaping and preparation in the treatment of glaucoma
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
JP2022552284A (en) 2019-10-10 2022-12-15 シファメド・ホールディングス・エルエルシー Adjustable flow glaucoma shunt and related systems and methods
WO2021151007A1 (en) 2020-01-23 2021-07-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
CA3167488A1 (en) 2020-02-14 2021-08-19 Eric Schultz Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
JP2023522332A (en) 2020-04-16 2023-05-30 シファメド・ホールディングス・エルエルシー ADJUSTABLE GLAUCOMA TREATMENT DEVICES AND RELATED SYSTEMS AND METHODS
US11357543B1 (en) * 2020-12-31 2022-06-14 Giovanna McCarthy Curved cannula
JP2024503989A (en) 2021-01-11 2024-01-30 アルコン インコーポレイティド Systems and methods for viscoelastic delivery
WO2022159723A1 (en) 2021-01-22 2022-07-28 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods
IL309117A (en) * 2021-07-07 2024-02-01 Genentech Inc Inserter system for rod implants and methods of use
CN114569325A (en) * 2022-01-18 2022-06-03 苏州朗目医疗科技有限公司 Injection device
KR20240025104A (en) * 2022-08-17 2024-02-27 주식회사 마이크로트 Apparatus for injecting tube-type implant into eye

Family Cites Families (587)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2031754A (en) 1932-11-04 1936-02-25 Ernest J Sweetland Extensible coupling
US2127903A (en) 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US2269963A (en) 1940-06-01 1942-01-13 Wappler Frederick Charles Implanting device
US3439675A (en) 1966-06-14 1969-04-22 Becton Dickinson Co Deformable needle assembly
US3915172A (en) 1970-05-27 1975-10-28 Ceskoslovenska Akademie Ved Capillary drain for glaucoma
US3717151A (en) 1971-03-11 1973-02-20 R Collett Flesh penetrating apparatus
US3788327A (en) 1971-03-30 1974-01-29 H Donowitz Surgical implant device
SE353590B (en) 1971-10-01 1973-02-05 J Kaller
JPS5328788B2 (en) 1971-11-29 1978-08-16
US3809093A (en) 1972-04-14 1974-05-07 S Abraham Surgical tool
US3948871A (en) 1972-04-21 1976-04-06 George H. Butterfield And Son Composition for hard type contact lens with wettable surface
US3863623A (en) 1972-06-19 1975-02-04 Medical College Of Georgia Fou Method for microscintigraphic evaluation studies
US3948271A (en) 1972-11-07 1976-04-06 Taichiro Akiyama Drain for the eardrum and apparatus for introducing the same
US3976077A (en) 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4037604A (en) 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4043346A (en) 1976-03-10 1977-08-23 Baylor College Of Medicine Catheter
US4030480A (en) 1976-05-13 1977-06-21 Ernst Jochen Meyer Ocular decompression process
US4168697A (en) 1977-01-17 1979-09-25 Cantekin Erdem I Middle ear ventilating tube and method
US4113088A (en) 1977-06-06 1978-09-12 Binkhorst Richard D Sterile package
US4175563A (en) 1977-10-05 1979-11-27 Arenberg Irving K Biological drainage shunt
US4299227A (en) 1979-10-19 1981-11-10 Lincoff Harvey A Ophthalmological appliance
US4402681A (en) 1980-08-23 1983-09-06 Haas Joseph S Artificial implant valve for the regulation of intraocular pressure
US4328803B1 (en) 1980-10-20 1994-01-11 Opthalmic Systems, Inc. Opthalmological procedures
US4366582A (en) 1980-12-01 1983-01-04 Faulkner Gerald D Posterior chamber intraocular lens
NO147900C (en) 1981-03-12 1983-07-06 Finn Skjaerpe MICROSURGICAL INSTRUMENT.
US4428746A (en) 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4449529A (en) 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
DE3206834A1 (en) 1982-02-26 1983-09-15 Walter Dr. 4000 Düsseldorf Messingschlager DRAINAGE TUBE FOR USE IN AN OPERATIONAL ACCESS TO A BODY RECOVERY
US4554918A (en) 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
JPS5985153A (en) 1982-11-08 1984-05-17 Hitachi Ltd Redundancy controller
US4521210A (en) 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
FR2553658A1 (en) 1983-10-19 1985-04-26 Neidich Warren Implant valve for curing glaucoma
US4560383A (en) 1983-10-27 1985-12-24 Leiske Larry G Anterior chamber intraocular lens
US4578058A (en) 1984-04-02 1986-03-25 Grandon Stanley C Intraocular catheter apparatus and method of use
US4634418A (en) 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4787885A (en) 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
DE3447642C1 (en) 1984-12-28 1986-09-18 Bernhard M. Dr. 5600 Wuppertal Cramer Steerable guidewire for catheters
US4604087A (en) 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4642090A (en) 1985-03-04 1987-02-10 Utrata Peter J Disposable combination scalpel blade and incision irrigator for ophthalmological use
US4820626A (en) 1985-06-06 1989-04-11 Thomas Jefferson University Method of treating a synthetic or naturally occuring surface with microvascular endothelial cells, and the treated surface itself
US4718907A (en) 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4632842A (en) 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
US4883864A (en) 1985-09-06 1989-11-28 Minnesota Mining And Manufacturing Company Modified collagen compound and method of preparation
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4692142A (en) 1986-02-24 1987-09-08 Dignam Bernard J Sutureless infusion cannula for ophthalmic surgery
NZ215409A (en) 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
CH670760A5 (en) 1986-06-02 1989-07-14 Sulzer Ag
US4722724A (en) 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4867173A (en) 1986-06-30 1989-09-19 Meadox Surgimed A/S Steerable guidewire
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4782819A (en) 1987-02-25 1988-11-08 Adair Edwin Lloyd Optical catheter
US4846793A (en) 1987-03-18 1989-07-11 Endocon, Inc. Injector for implanting multiple pellet medicaments
DE3715699A1 (en) 1987-05-12 1988-12-01 Foerster Ernst CATHETER AND ENDOSCOPE FOR THE TRANSPAPILLARY DISPLAY OF THE GALLEN BLADDER
US4846172A (en) 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4900300A (en) 1987-07-06 1990-02-13 Lee David A Surgical instrument
AU2308988A (en) 1987-08-06 1989-03-01 Thomas C. White Glaucoma drainage in the lacrimal system
US4886488A (en) 1987-08-06 1989-12-12 White Thomas C Glaucoma drainage the lacrimal system and method
EP0375676A1 (en) 1987-08-19 1990-07-04 BERG, Olle A drainage tube for sinus maxillaris, a means for its insertion and a means for making a hole for its positioning
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US4997652A (en) 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US5053044A (en) 1988-01-11 1991-10-01 Devices For Vascular Intervention, Inc. Catheter and method for making intravascular incisions
US4800870A (en) 1988-03-11 1989-01-31 Reid Jr Ben A Method and apparatus for bile duct exploration
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US5005577A (en) 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
AU4191989A (en) 1988-08-24 1990-03-23 Marvin J. Slepian Biodegradable polymeric endoluminal sealing
US5785674A (en) 1988-10-07 1998-07-28 Mateen; Ahmed Abdul Device and method for treating glaucoma
US5681275A (en) 1988-10-07 1997-10-28 Ahmed; Abdul Mateen Ophthalmological device with adaptable multiple distribution plates
US5116327A (en) 1989-06-05 1992-05-26 Helix Medical, Inc. Hysterectomy drain appliance
US4991602A (en) 1989-06-27 1991-02-12 Flexmedics Corporation Flexible guide wire with safety tip
US5817075A (en) 1989-08-14 1998-10-06 Photogenesis, Inc. Method for preparation and transplantation of planar implants and surgical instrument therefor
SG49267A1 (en) 1989-08-14 1998-05-18 Photogenesis Inc Surgical instrument and cell isolation and transplantation
US4986810A (en) 1989-09-01 1991-01-22 Neal Semrad Toggle catheter
US5169386A (en) 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system
FR2651668B1 (en) 1989-09-12 1991-12-27 Leon Claude MICROSCOPE-ENDOSCOPE ASSEMBLY USEFUL IN PARTICULAR IN SURGERY.
US5053040A (en) 1989-11-09 1991-10-01 Goldsmith Iii Manning M Method of performing a myringotomy
USRE35390E (en) 1989-11-17 1996-12-03 Smith; Stewart G. Pressure relieving device and process for implanting
US4946436A (en) 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5092837A (en) 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
DE4030004A1 (en) 1990-01-05 1992-03-26 Heino Dr Hermeking INSTRUMENT WITH HOOK PLATE FOR IMPLANTING AN ARTIFICIAL LENS
US5221255A (en) 1990-01-10 1993-06-22 Mahurkar Sakharam D Reinforced multiple lumen catheter
US5073163A (en) 1990-01-29 1991-12-17 Lippman Myron E Apparatus for treating glaucoma
RU2022539C1 (en) 1990-01-29 1994-11-15 Мир Сергеевич Ремизов Method of treating glaucoma
US5180362A (en) 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5129895A (en) 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
US5127901A (en) 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5041081A (en) 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5178604A (en) 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5397300A (en) 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5725529A (en) 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
US5688261A (en) 1990-11-07 1997-11-18 Premier Laser Systems, Inc. Transparent laser surgical probe
US5273530A (en) 1990-11-14 1993-12-28 The University Of Rochester Intraretinal delivery and withdrawal instruments
US5454796A (en) 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5312394A (en) 1991-04-29 1994-05-17 Hugh Beckman Apparatus and method for surgically performing a filtering operation on an eye for glaucoma
US5246451A (en) 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
US5358492A (en) 1991-05-02 1994-10-25 Feibus Miriam H Woven surgical drain and method of making
US6007511A (en) 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US5300020A (en) 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5171213A (en) 1991-08-14 1992-12-15 Price Jr Francis W Technique for fistulization of the eye and an eye filtration prosthesis useful therefor
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
GB2260585A (en) 1991-10-09 1993-04-21 Avdel Systems Ltd Self-plugging blind rivet
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5360399A (en) 1992-01-10 1994-11-01 Robert Stegmann Method and apparatus for maintaining the normal intraocular pressure
US5207685A (en) 1992-02-11 1993-05-04 Cinberg James Z Tympanic ventilation tube and related technique
US5334137A (en) 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5346464A (en) 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
US5284476A (en) 1992-03-20 1994-02-08 Koch Paul S Nuclear hydrolysis cannula
US5415666A (en) 1992-03-23 1995-05-16 Advanced Surgical, Inc. Tethered clamp retractor
US5368601A (en) 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
US5370641A (en) 1992-05-22 1994-12-06 O'donnell, Jr.; Francis E. Laser trabeculodissection
DE4219299C2 (en) 1992-06-12 1994-03-24 Leica Mikroskopie & Syst microscope
US5290295A (en) 1992-07-15 1994-03-01 Querals & Fine, Inc. Insertion tool for an intraluminal graft procedure
US6197056B1 (en) 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
WO1994002081A1 (en) 1992-07-16 1994-02-03 Wong Vernon G Eye implant suitable for relief of glaucoma
JP3739411B2 (en) 1992-09-08 2006-01-25 敬二 伊垣 Vascular stent, manufacturing method thereof, and vascular stent device
US5318513A (en) 1992-09-24 1994-06-07 Leib Martin L Canalicular balloon fixation stent
CN1076023A (en) 1992-10-12 1993-09-08 郑刚 A kind of all optical fibre multifunction sensor
US5370607A (en) 1992-10-28 1994-12-06 Annuit Coeptis, Inc. Glaucoma implant device and method for implanting same
WO1994013234A1 (en) 1992-12-17 1994-06-23 Michael Andrew Coote Implant device and method for treatment of glaucoma
US5338291A (en) 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
SG49754A1 (en) 1993-03-16 1998-06-15 Photogenesis Inc Method for preparation and transplantation of volute grafts and surgical instrument therefor
US5342370A (en) 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
IL105828A (en) 1993-05-28 1999-06-20 Medinol Ltd Medical stent
US5653724A (en) 1993-08-18 1997-08-05 Imonti; Maurice M. Angled phacoemulsifier tip
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
FR2710269A1 (en) 1993-09-22 1995-03-31 Voir Vivre Implantable device for the treatment of edemas.
FI934513A (en) 1993-10-13 1995-04-14 Leiras Oy Anordning Foer injection with implant
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5695479A (en) 1993-11-01 1997-12-09 Jagpal; Ravindar Instrument, system, kit and method for catheterization procedures
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5445637A (en) 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
AU686315B2 (en) 1994-02-07 1998-02-05 Kabushikikaisya Igaki Iryo Sekkei Stent device and stent supply system
US5743868A (en) 1994-02-14 1998-04-28 Brown; Reay H. Corneal pressure-regulating implant device
US6135977A (en) 1994-02-16 2000-10-24 Possis Medical, Inc. Rheolytic catheter
US5516522A (en) 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5716394A (en) 1994-04-29 1998-02-10 W. L. Gore & Associates, Inc. Blood contact surfaces using extracellular matrix synthesized in vitro
IL109499A (en) 1994-05-02 1998-01-04 Univ Ramot Implant device for draining excess intraocular fluid
FR2721499B1 (en) 1994-06-22 1997-01-03 Opsia Trabeculectomy implant.
US5725546A (en) 1994-06-24 1998-03-10 Target Therapeutics, Inc. Detachable microcoil delivery catheter
US6405732B1 (en) 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US5704907A (en) 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5520631A (en) 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US6102045A (en) 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US5665114A (en) 1994-08-12 1997-09-09 Meadox Medicals, Inc. Tubular expanded polytetrafluoroethylene implantable prostheses
US5462558A (en) 1994-08-29 1995-10-31 United States Surgical Corporation Suture clip applier
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US6063116A (en) 1994-10-26 2000-05-16 Medarex, Inc. Modulation of cell proliferation and wound healing
US6063396A (en) 1994-10-26 2000-05-16 Houston Biotechnology Incorporated Methods and compositions for the modulation of cell proliferation and wound healing
US5643321A (en) 1994-11-10 1997-07-01 Innovasive Devices Suture anchor assembly and methods
JP3642812B2 (en) 1994-11-17 2005-04-27 株式会社町田製作所 Medical observation device
US5601094A (en) 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US6228873B1 (en) 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5433701A (en) 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
US5891084A (en) 1994-12-27 1999-04-06 Lee; Vincent W. Multiple chamber catheter delivery system
US5556400A (en) 1994-12-27 1996-09-17 Tunis; Scott W. Methods of preparing and inserting flexible intraocular lenses and a configuration for flexible intraocular lenses
US5558630A (en) 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
GB2296663A (en) 1995-01-03 1996-07-10 Ahmed Salih Mahmud Drainage device for alleviating excess ophthalmic fluid pressure
WO1996020742A1 (en) 1995-01-06 1996-07-11 Wong Vernon G Improve eye implant for relief of glaucoma
JPH10513455A (en) 1995-02-10 1998-12-22 ザ ユニバーシティ オブ トロント イノベーションズ ファウンデーション Deprenyl compounds for the treatment of glaucoma
US5792099A (en) 1995-02-14 1998-08-11 Decamp; Dennis Syringe and cannula for insertion of viscoelastic material into an eye and method of using same
US6059772A (en) 1995-03-10 2000-05-09 Candela Corporation Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure
BE1009278A3 (en) 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
US5626558A (en) 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
IL113723A (en) 1995-05-14 2002-11-10 Optonol Ltd Intraocular implant
CN1283324C (en) 1995-05-14 2006-11-08 奥普通诺尔有限公司 Intraocular implant, delivery device, and method of implantation
US5968058A (en) 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
WO1996037167A1 (en) 1995-05-25 1996-11-28 Raychem Corporation Stent assembly
US5723005A (en) 1995-06-07 1998-03-03 Herrick Family Limited Partnership Punctum plug having a collapsible flared section and method
AU5776696A (en) 1995-06-08 1997-01-09 Bard Galway Limited Bifurcated endovascular stent
US5913852A (en) 1995-07-21 1999-06-22 Nemours Foundation Drain cannula
US5934285A (en) 1995-07-27 1999-08-10 Michiel S. Kritzinger Method for reducing irregular astigmatism and debris/epithelium in the interface during lamellar corneal flap/cap surgery
US5766243A (en) 1995-08-21 1998-06-16 Oasis Medical, Inc. Abrasive polished canalicular implant
US5662600A (en) 1995-09-29 1997-09-02 Pudenz-Schulte Medical Research Corporation Burr-hole flow control device
US6099558A (en) 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US5836939A (en) 1995-10-25 1998-11-17 Plc Medical Systems, Inc. Surgical laser handpiece
US5741292A (en) 1995-10-26 1998-04-21 Eagle Vision Punctum dilating and plug inserting instrument with push-button plug release
US5651783A (en) 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
US6299895B1 (en) 1997-03-24 2001-10-09 Neurotech S.A. Device and method for treating ophthalmic diseases
US5807302A (en) 1996-04-01 1998-09-15 Wandel; Thaddeus Treatment of glaucoma
US5830179A (en) 1996-04-09 1998-11-03 Endocare, Inc. Urological stent therapy system and method
US6629981B2 (en) 2000-07-06 2003-10-07 Endocare, Inc. Stent delivery system
US5865831A (en) 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
NL1002898C2 (en) 1996-04-18 1997-10-21 Cordis Europ Catheter with marker sleeve.
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US6530896B1 (en) 1996-05-13 2003-03-11 James B. Elliott Apparatus and method for introducing an implant
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5669501A (en) 1996-06-05 1997-09-23 Xomed Surgical Products, Inc. Package and method for delivering a medical implant
US5681323A (en) 1996-07-15 1997-10-28 Arick; Daniel S. Emergency cricothyrotomy tube insertion
US5755682A (en) 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5830139A (en) 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
RU2143250C1 (en) 1996-09-25 1999-12-27 Астахов Сергей Юрьевич Method for treating patients suffering from a combination of glaucoma and cataract
US5733256A (en) 1996-09-26 1998-03-31 Micro Medical Devices Integrated phacoemulsification system
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
US5807244A (en) 1996-11-15 1998-09-15 Barot; Jagdish Shantilal Single use disposable iris retractor
US5941250A (en) 1996-11-21 1999-08-24 University Of Louisville Research Foundation Inc. Retinal tissue implantation method
AUPO394496A0 (en) 1996-11-29 1997-01-02 Lions Eye Institute Biological microfistula tube and implantation method and apparatus
US6495579B1 (en) 1996-12-02 2002-12-17 Angiotech Pharmaceuticals, Inc. Method for treating multiple sclerosis
FR2757068B1 (en) 1996-12-13 1999-04-23 Jussmann Alberto SELF-FIXING DRAIN
DE19651951C2 (en) 1996-12-16 2002-06-27 Adeva Medical Ges Fuer Entwick Shunt valve
US6261256B1 (en) 1996-12-20 2001-07-17 Abdul Mateen Ahmed Pocket medical valve & method
US5713844A (en) 1997-01-10 1998-02-03 Peyman; Gholam A. Device and method for regulating intraocular pressure
GB9700390D0 (en) 1997-01-10 1997-02-26 Biocompatibles Ltd Device for use in the eye
US6780165B2 (en) 1997-01-22 2004-08-24 Advanced Medical Optics Micro-burst ultrasonic power delivery
DE19705815C2 (en) 1997-02-15 1999-02-11 Heidelberg Engineering Optisch Medical device for microsurgery on the eye
FR2759577B1 (en) 1997-02-17 1999-08-06 Corneal Ind DEEP SCLERECTOMY IMPLANT
US6071286A (en) 1997-02-19 2000-06-06 Mawad; Michel E. Combination angioplasty balloon/stent deployment device
US5893837A (en) 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US6059812A (en) 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
JP3827429B2 (en) 1997-04-03 2006-09-27 オリンパス株式会社 Surgical microscope
US5882327A (en) 1997-04-17 1999-03-16 Jacob; Jean T. Long-term glaucoma drainage implant
US6050970A (en) 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US5752928A (en) 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5830171A (en) 1997-08-12 1998-11-03 Odyssey Medical, Inc. Punctal occluder
EP0898947A3 (en) 1997-08-15 1999-09-08 GRIESHABER & CO. AG SCHAFFHAUSEN Method and apparatus to improve the outflow of the aqueous humor of an eye
US6004302A (en) 1997-08-28 1999-12-21 Brierley; Lawrence A. Cannula
US8313454B2 (en) 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US6036682A (en) 1997-12-02 2000-03-14 Scimed Life Systems, Inc. Catheter having a plurality of integral radiopaque bands
EP1039847A1 (en) 1997-12-15 2000-10-04 Prolifix Medical, Inc. Vascular stent for reduction of restenosis
US5927585A (en) 1997-12-17 1999-07-27 Senco Products, Inc. Electric multiple impact fastener driving tool
US6050999A (en) 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US7780623B2 (en) 1998-01-29 2010-08-24 Soltanpour David P Implantable pump apparatuses
US6589198B1 (en) 1998-01-29 2003-07-08 David Soltanpour Implantable micro-pump assembly
US6682500B2 (en) 1998-01-29 2004-01-27 David Soltanpour Synthetic muscle based diaphragm pump apparatuses
US6168575B1 (en) 1998-01-29 2001-01-02 David Pyam Soltanpour Method and apparatus for controlling intraocular pressure
US6224570B1 (en) 1998-02-06 2001-05-01 Possis Medical, Inc. Rheolytic thrombectomy catheter and method of using same
US6030416A (en) 1998-02-13 2000-02-29 Pharmacia & Upjohn Ab Medical implants of stretch-crystallizable elastomers and methods of implantation
EP1071414A1 (en) 1998-04-24 2001-01-31 Mitokor Compounds and methods for treating mitochondria-associated diseases
US6371960B2 (en) 1998-05-19 2002-04-16 Bausch & Lomb Surgical, Inc. Device for inserting a flexible intraocular lens
US6306114B1 (en) 1998-06-16 2001-10-23 Eagle Vision, Inc. Valved canalicular plug for lacrimal duct occlusion
US6319274B1 (en) 1998-06-22 2001-11-20 John H. Shadduck Devices and techniques for light-mediated stimulation of trabecular meshwork in glaucoma therapy
US6077299A (en) 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6402734B1 (en) 1998-07-02 2002-06-11 Jeffrey N. Weiss Apparatus and method for cannulating retinal blood vessels
US6591838B2 (en) 1998-07-06 2003-07-15 Scimed Life Systems, Inc. Implant system and method for bulking tissue
US6309374B1 (en) 1998-08-03 2001-10-30 Insite Vision Incorporated Injection apparatus and method of using same
US6146387A (en) 1998-08-26 2000-11-14 Linvatec Corporation Cannulated tissue anchor system
DE19840047B4 (en) 1998-09-02 2004-07-08 Neuhann, Thomas, Prof.Dr.med. Device for the targeted improvement and / or permanent guarantee of the permeability for eye chamber water through the trabecular mechanism in the Schlemm's Canal
KR100300527B1 (en) 1998-09-03 2001-10-27 윤덕용 Remote pressure monitoring device of sealed type and manufacture method for the same
EP1112043B1 (en) 1998-09-10 2006-04-05 Percardia, Inc. Tmr shunt
US6290728B1 (en) 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
US6264668B1 (en) 1998-09-16 2001-07-24 Arnold S. Prywes Ophthalmologic instrument for producing a fistula in the sclera
EP1447058A1 (en) 1998-09-30 2004-08-18 Bard Peripheral Vascular, Inc. Delivery mechanism for implantable stent
US6241721B1 (en) 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
GB9827415D0 (en) 1998-12-11 1999-02-03 Wild Andrew M Surgical apparatus and method for occluding a body passageway
US6454787B1 (en) 1998-12-11 2002-09-24 C. R. Bard, Inc. Collagen hemostatic foam
US6363938B2 (en) 1998-12-22 2002-04-02 Angiotrax, Inc. Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth
US6348042B1 (en) 1999-02-02 2002-02-19 W. Lee Warren, Jr. Bioactive shunt
US6074395A (en) 1999-02-02 2000-06-13 Linvatec Corporation Cannulated tissue anchor insertion system
US6193656B1 (en) 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US6231597B1 (en) 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US20050119601A9 (en) 1999-04-26 2005-06-02 Lynch Mary G. Shunt device and method for treating glaucoma
BR0010055A (en) 1999-04-26 2002-04-09 Gmp Vision Solutions Inc Bypass device and use thereof
DE19920615A1 (en) 1999-05-05 2000-12-07 Tui Laser Ag Device for treating glaucorn of the eye
US6342058B1 (en) 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
US6558342B1 (en) 1999-06-02 2003-05-06 Optonol Ltd. Flow control device, introducer and method of implanting
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6221078B1 (en) 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US20080277007A1 (en) 1999-06-28 2008-11-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
DK1065378T3 (en) 1999-06-28 2002-07-29 California Inst Of Techn Elastomeric micropump and micro valve systems
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7033603B2 (en) 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
WO2001013832A1 (en) 1999-08-23 2001-03-01 Conceptus, Inc. Insertion/deployment catheter system for intrafallopian contraception
US6605053B1 (en) 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control
US6187016B1 (en) 1999-09-14 2001-02-13 Daniel G. Hedges Stent retrieval device
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
ATE283013T1 (en) 1999-10-21 2004-12-15 Alcon Inc MEDICATION DELIVERY DEVICE
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6579235B1 (en) 1999-11-01 2003-06-17 The Johns Hopkins University Method for monitoring intraocular pressure using a passive intraocular pressure sensor and patient worn monitoring recorder
US7758624B2 (en) 2000-11-13 2010-07-20 C. R. Bard, Inc. Implant delivery device
US6287313B1 (en) 1999-11-23 2001-09-11 Sdgi Holdings, Inc. Screw delivery system and method
JP2003514616A (en) 1999-11-24 2003-04-22 グリースハーバー ウント コンパニー アーゲー シャフハウゼン Apparatus for improving the outflow of aqueous humor in a living eye
DE29920949U1 (en) 1999-11-29 2000-04-27 Bugge Mogens Suction tube for surgical purposes
US20020072673A1 (en) 1999-12-10 2002-06-13 Yamamoto Ronald K. Treatment of ocular disease
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
WO2001049352A2 (en) 2000-01-03 2001-07-12 Johns Hopkins University Device and method for manual retinal vein catheterization
WO2001049227A1 (en) 2000-01-03 2001-07-12 Johns Hopkins University Surgical devices and methods of use thereof for enhanced tactile perception
US6726676B2 (en) 2000-01-05 2004-04-27 Grieshaber & Co. Ag Schaffhausen Method of and device for improving the flow of aqueous humor within the eye
US20030212383A1 (en) 2001-01-05 2003-11-13 Dana Cote System and methods for reducing intraocular pressure
US20050119737A1 (en) 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
PL362931A1 (en) 2000-01-12 2004-11-02 Becton, Dickinson And Company Systems and methods for reducing intraocular pressure
US6589203B1 (en) 2000-01-26 2003-07-08 Peter Mitrev Glaucoma drainage device implant
US6375642B1 (en) 2000-02-15 2002-04-23 Grieshaber & Co. Ag Schaffhausen Method of and device for improving a drainage of aqueous humor within the eye
US20030018044A1 (en) 2000-02-18 2003-01-23 Peyman Gholam A. Treatment of ocular disease
US6471666B1 (en) 2000-02-24 2002-10-29 Steven A. Odrich Injectable glaucoma device
US7077848B1 (en) 2000-03-11 2006-07-18 John Hopkins University Sutureless occular surgical methods and instruments for use in such methods
RU2160573C1 (en) 2000-03-30 2000-12-20 Российская медицинская академия последипломного образования Surgical method for treating the cases of glaucoma and cataract combination
US6613343B2 (en) 2000-04-12 2003-09-02 Pharmacia Groningen Bv Injectable intraocular accommodating lens
US20040111050A1 (en) 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US20030060752A1 (en) 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US6533768B1 (en) 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US7135009B2 (en) 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US20050277864A1 (en) 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US20020143284A1 (en) 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
GB0010871D0 (en) 2000-05-06 2000-06-28 Duckworth & Kent Ltd Opthalmic injector
ATE464031T1 (en) 2000-05-08 2010-04-15 Optima Ltd I NON-PENETRATING FILTRATION SURGERY
CA2446143C (en) 2000-05-19 2010-01-19 Michael S. Berlin Delivery system and method of use for the eye
US8679089B2 (en) 2001-05-21 2014-03-25 Michael S. Berlin Glaucoma surgery methods and systems
US9603741B2 (en) 2000-05-19 2017-03-28 Michael S. Berlin Delivery system and method of use for the eye
US6561974B1 (en) 2000-05-31 2003-05-13 Grieshaber & Co. Ag Schaffhausen Device for use in a surgical procedure on an eye of a living being, and method of retracting the iris
AU2001268253A1 (en) 2000-06-19 2002-01-02 Glaukos Corporation Stented trabecular shunt and methods thereof
US6582453B1 (en) 2000-07-14 2003-06-24 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6629992B2 (en) 2000-08-04 2003-10-07 Advanced Cardiovascular Systems, Inc. Sheath for self-expanding stent
DE10042310A1 (en) 2000-08-29 2002-03-14 Aixmed Ges Fuer Medizintechnik Aqueous humor drainage device
US6428501B1 (en) 2000-09-19 2002-08-06 K2 Limited Partnership U/A/D Surgical instrument sleeve
US6730056B1 (en) 2000-09-21 2004-05-04 Motorola, Inc. Eye implant for treating glaucoma and method for manufacturing same
US6962573B1 (en) 2000-10-18 2005-11-08 Wilcox Michael J C-shaped cross section tubular ophthalmic implant for reduction of intraocular pressure in glaucomatous eyes and method of use
US6428566B1 (en) 2000-10-31 2002-08-06 Advanced Cardiovascular Systems, Inc. Flexible hoop and link sheath for a stent delivery system
WO2002036052A1 (en) 2000-11-01 2002-05-10 Glaukos Corporation Glaucoma treatment device
US6595945B2 (en) 2001-01-09 2003-07-22 J. David Brown Glaucoma treatment device and method
EP2335660B1 (en) 2001-01-18 2018-03-28 The Regents of The University of California Minimally invasive glaucoma surgical instrument
US6827738B2 (en) 2001-01-30 2004-12-07 Timothy R. Willis Refractive intraocular implant lens and method
ATE337766T1 (en) 2001-02-23 2006-09-15 Refocus Ocular Inc CUTTING DEVICE FOR SCLEROTIC IMPLANTS
JP2004525695A (en) 2001-03-16 2004-08-26 グローコス コーポレーション Applicator and method for positioning trabecular shunt for glaucoma treatment
US6585753B2 (en) 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
DE10118933A1 (en) 2001-04-18 2002-11-14 Glautec Ag Glaucoma treatment device
WO2002102274A2 (en) 2001-05-01 2002-12-27 Glaukos Corporation Glaucoma device and methods thereof
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
AU2002305400A1 (en) 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
US6533769B2 (en) 2001-05-03 2003-03-18 Holmen Joergen Method for use in cataract surgery
DE10127666A1 (en) 2001-06-07 2003-01-09 Glautec Ag Apparatus for glaucoma treatment by means of a laser catheter includes a stent made of a material which dissolves after a certain time
CA2457137A1 (en) 2001-08-16 2003-02-27 Gmp Vision Solutions, Inc. Improved shunt device and method for treating glaucoma
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
IN2014DN10834A (en) 2001-09-17 2015-09-04 Psivida Inc
US6767346B2 (en) 2001-09-20 2004-07-27 Endocare, Inc. Cryosurgical probe with bellows shaft
US20030097151A1 (en) 2001-10-25 2003-05-22 Smedley Gregory T. Apparatus and mitochondrial treatment for glaucoma
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030093084A1 (en) 2001-11-13 2003-05-15 Optonol Ltd. Delivery devices for flow regulating implants
EP1448124A1 (en) 2001-11-15 2004-08-25 Optotech Ltd. Non-penetrating filtration surgery
US6802829B2 (en) 2001-11-16 2004-10-12 Infinite Vision, Llc Spray device
US8491549B2 (en) 2001-11-21 2013-07-23 Iscience Interventional Corporation Ophthalmic microsurgical system
EP1810645B1 (en) 2001-11-22 2010-07-28 Eduard Anton Haefliger Device and method for performing ophthalmologic operations
US20030105456A1 (en) 2001-12-04 2003-06-05 J.T. Lin Apparatus and methods for prevention of age-related macular degeneration and other eye diseases
US6893413B2 (en) 2002-01-07 2005-05-17 Eric C. Martin Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6966888B2 (en) 2002-01-13 2005-11-22 Eagle Vision, Inc. Sinus valved glaucoma shunt
WO2003073968A2 (en) 2002-02-28 2003-09-12 Gmp Vision Solutions, Inc. Device and method for monitoring aqueous flow within the eye
US20060200113A1 (en) 2002-03-07 2006-09-07 David Haffner Liquid jet for glaucoma treatment
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030229303A1 (en) 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
US6902577B2 (en) 2002-03-29 2005-06-07 Isaac Lipshitz Intraocular lens implant with mirror
US20040147870A1 (en) 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US20030195438A1 (en) 2002-04-12 2003-10-16 Petillo Phillip J. Method and apparatus to treat glaucoma
US20040024345A1 (en) 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
US7041114B2 (en) 2002-05-01 2006-05-09 D.O.T. Dan Ophthalmic Technologies Ltd. Surgical tool and method for extracting tissue from wall of an organ
AU2003241530A1 (en) 2002-05-20 2003-12-12 Refocus Group, Inc. System and method for determining a position for a scleral pocket for a scleral prosthesis
EP1932484B1 (en) 2002-06-11 2011-04-27 Tyco Healthcare Group LP Hernia mesh tacks
US20040243227A1 (en) 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20030236483A1 (en) 2002-06-25 2003-12-25 Ren David H Dual drainage ocular shunt for glaucoma
CN100591372C (en) 2002-07-19 2010-02-24 耶鲁大学 Uveoscleral drainage device
US7192412B1 (en) 2002-09-14 2007-03-20 Glaukos Corporation Targeted stent placement and multi-stent therapy
WO2004026347A2 (en) 2002-09-17 2004-04-01 Iscience Surgical Corporation Apparatus and method for surgical bypass of aqueous humor
US7468065B2 (en) 2002-09-18 2008-12-23 Allergan, Inc. Apparatus for delivery of ocular implants
JP3688287B1 (en) 2002-09-18 2005-08-24 アラーガン、インコーポレイテッド Device for delivering an ophthalmic implant
USRE40722E1 (en) 2002-09-27 2009-06-09 Surmodics, Inc. Method and apparatus for coating of substrates
US7192484B2 (en) 2002-09-27 2007-03-20 Surmodics, Inc. Advanced coating apparatus and method
AU2003291377A1 (en) 2002-11-06 2004-06-03 Gmp Vision Solutions, Inc. Storage apparatus for surgical implant device
US7001426B2 (en) 2002-11-18 2006-02-21 The Institute For Eye Research One-piece minicapsulorhexis valve
US7160264B2 (en) 2002-12-19 2007-01-09 Medtronic-Xomed, Inc. Article and method for ocular aqueous drainage
US20040216749A1 (en) 2003-01-23 2004-11-04 Hosheng Tu Vasomodulation during glaucoma surgery
RU2361552C2 (en) 2003-02-18 2009-07-20 Хампар КАРАГЕОЗЯН Ways and devices for drainage of liquids and ophthalmotonus pressure dropping
US7297154B2 (en) 2003-02-24 2007-11-20 Maxwell Sensors Inc. Optical apparatus for detecting and treating vulnerable plaque
USD490152S1 (en) 2003-02-28 2004-05-18 Glaukos Corporation Surgical handpiece
US20050209672A1 (en) 2004-03-02 2005-09-22 Cardiomind, Inc. Sliding restraint stent delivery systems
US20040193262A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20040193095A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20070073275A1 (en) 2003-04-16 2007-03-29 Conston Stanley R Ophthalmic microsurgical instruments
US20050038498A1 (en) 2003-04-17 2005-02-17 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7025740B2 (en) 2003-04-22 2006-04-11 Ahmed A Mateen Device for treating glaucoma & method of manufacture
US20040225250A1 (en) 2003-05-05 2004-11-11 Michael Yablonski Internal shunt and method for treating glaucoma
US20040236343A1 (en) 2003-05-23 2004-11-25 Taylor Jon B. Insertion tool for ocular implant and method for using same
ES2386994T3 (en) 2003-06-10 2012-09-10 Neomedix Corporation Tubular cutting device
CA2528060C (en) 2003-06-10 2012-12-11 Neomedix Corporation Device and methods useable for treatment of glaucoma and other surgical procedures
US7670362B2 (en) 2003-06-13 2010-03-02 Tyco Healthcare Group Lp Multiple member interconnect for surgical instrument and absorbable screw fastener
CA2529495C (en) 2003-06-16 2013-02-05 Solx, Inc. Shunt for the treatment of glaucoma
US20060069340A1 (en) 2003-06-16 2006-03-30 Solx, Inc. Shunt for the treatment of glaucoma
US20050055075A1 (en) 2003-09-08 2005-03-10 Leonard Pinchuk Methods for the manufacture of porous prostheses
US7291125B2 (en) 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
AU2004296205B2 (en) 2003-12-05 2009-11-12 Innfocus, Llc Glaucoma implant device
US20070149927A1 (en) 2003-12-15 2007-06-28 Terumo Kabushiki Kaisha Catheter assembly
CA2552966C (en) 2004-01-12 2012-10-30 Iscience Surgical Corporation Injector for viscous materials
WO2005072294A2 (en) 2004-01-22 2005-08-11 Solx, Inc. Glaucoma treatment method
EP1715827B1 (en) 2004-01-23 2010-12-29 iScience Interventional Corporation Composite ophthalmic microcannula
US20050250788A1 (en) 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US7544176B2 (en) 2005-06-21 2009-06-09 Becton, Dickinson And Company Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US7156821B2 (en) 2004-04-23 2007-01-02 Massachusetts Eye & Ear Infirmary Shunt with enclosed pressure-relief valve
US8114099B2 (en) 2004-04-27 2012-02-14 Tyco Healthcare Group Lp Absorbable anchor for hernia mesh fixation
US7758612B2 (en) 2004-04-27 2010-07-20 Tyco Healthcare Group Lp Surgery delivery device and mesh anchor
US20100173866A1 (en) 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
US20090043321A1 (en) 2004-04-29 2009-02-12 Iscience Interventional Corporation Apparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
KR20070036044A (en) 2004-04-29 2007-04-02 아이싸이언스 인터벤셔날 코포레이션 Apparatus and method for ocular treatment
US20080058704A1 (en) 2004-04-29 2008-03-06 Michael Hee Apparatus and Method for Ocular Treatment
AU2005253930B2 (en) 2004-05-11 2011-04-28 Oregon Health And Science University Interfacial stent and method of maintaining patency of surgical fenestrations
US20060293612A1 (en) 2004-06-24 2006-12-28 Boston Scientific Scimed, Inc. Apparatus and method for treating occluded vasculature
US20060032507A1 (en) 2004-08-11 2006-02-16 Hosheng Tu Contrast-enhanced ocular imaging
US8246569B1 (en) 2004-08-17 2012-08-21 California Institute Of Technology Implantable intraocular pressure drain
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US20060173397A1 (en) 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
US7594899B2 (en) 2004-12-03 2009-09-29 Innfocus, Llc Glaucoma implant device
US20070118065A1 (en) 2004-12-03 2007-05-24 Leonard Pinchuk Glaucoma Implant Device
US7837644B2 (en) 2004-12-03 2010-11-23 Innfocus, Llc Glaucoma implant device
CA2598696A1 (en) 2005-02-23 2006-08-31 Surmodics, Inc. Implantable medical articles having laminin coatings and methods of use
US9186274B2 (en) 2005-02-23 2015-11-17 Camras Vision Inc. Method and apparatus for reducing intraocular pressure
US20060217741A1 (en) 2005-03-28 2006-09-28 Ghannoum Ziad R Irrigation tip
US20130079759A1 (en) 2005-04-14 2013-03-28 Robert S. Dotson Ophthalmic Phototherapy Device and Associated Treatment Method
US20080269730A1 (en) 2005-04-14 2008-10-30 Dotson Robert S Ophthalmic Phototherapy Device and Associated Treatment Method
WO2006121066A1 (en) 2005-05-10 2006-11-16 Takuya Kataoka Ophthalmologic laser treatment instrument
JP2008539965A (en) 2005-05-10 2008-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Self-cleaning catheter for clinical transplantation
US20070021653A1 (en) 2005-06-27 2007-01-25 Lars-Olof Hattenbach Device for the injection of drugs into microvessels
US20090043365A1 (en) 2005-07-18 2009-02-12 Kolis Scientific, Inc. Methods, apparatuses, and systems for reducing intraocular pressure as a means of preventing or treating open-angle glaucoma
US20080108932A1 (en) 2005-08-24 2008-05-08 Rodgers M Steven MEMS filter module with multi-level filter traps
JP2009508584A (en) 2005-09-16 2009-03-05 ビージー インプラント インコーポレイテッド Glaucoma treatment apparatus and method
US20070073390A1 (en) 2005-09-23 2007-03-29 Medlogics Device Corporation Methods and devices for enhanced adhesion between metallic substrates and bioactive material-containing coatings
EP1940316B1 (en) 2005-09-26 2015-10-21 AttenueX Technologies, Inc. Pressure attenuation device
US7717872B2 (en) 2005-09-28 2010-05-18 Rajesh Kumar Shetty Fluid shunting apparatus and methods
US7771388B2 (en) 2005-10-12 2010-08-10 Daniel Olsen Steerable catheter system
US7959632B2 (en) 2005-10-20 2011-06-14 Fugo Richard J Plasma incising device including disposable incising tips for performing surgical procedures
TW200733993A (en) 2005-11-03 2007-09-16 Reseal Internat Ltd Partnership Continuously sealing one way valve assembly and fluid delivery system and formulations for use therein
WO2007062306A2 (en) 2005-11-18 2007-05-31 The Board Of Regents Of The University Of Texas System Methods for coating surfaces with antimicrobial agents
US20070161981A1 (en) 2006-01-06 2007-07-12 Arthrocare Corporation Electrosurgical method and systems for treating glaucoma
ES2762239T3 (en) 2006-01-17 2020-05-22 Alcon Inc Glaucoma treatment device
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
EP1832301A3 (en) 2006-03-08 2007-12-05 Sahajanand Medical Technologies PVT. ltd Coatings for implantable medical devices
US7520876B2 (en) 2006-04-21 2009-04-21 Entellus Medical, Inc. Device and method for treatment of sinusitis
US20080039931A1 (en) 2006-04-25 2008-02-14 Surmodics, Inc. Hydrophilic shape memory insertable medical articles
US20070293807A1 (en) 2006-05-01 2007-12-20 Lynch Mary G Dual drainage pathway shunt device and method for treating glaucoma
US20070292470A1 (en) 2006-06-15 2007-12-20 Medtronic Vascular, Inc. Implantable Medical Devices and Methods for Making the Same
US8668676B2 (en) 2006-06-19 2014-03-11 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US20070293873A1 (en) 2006-06-19 2007-12-20 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
US20080108933A1 (en) 2006-06-30 2008-05-08 Dao-Yi Yu Methods, Systems and Apparatus for Relieving Pressure in an Organ
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US20120197175A1 (en) * 2006-06-30 2012-08-02 Aquesys, Inc. Methods, systems and apparatus for relieving pressure in an organ
AU2007273119A1 (en) 2006-07-07 2008-01-17 Surmodics, Inc. Implantable medical articles having pro-healing coatings
EP2526909B1 (en) 2006-07-11 2020-06-24 Refocus Group, Inc. Apparatus for securing ocular tissue
US9039761B2 (en) 2006-08-04 2015-05-26 Allergan, Inc. Ocular implant delivery assemblies with distal caps
WO2008022048A2 (en) 2006-08-10 2008-02-21 California Institute Of Technology Microfluidic valve having free-floating member and method of fabrication
US20100262174A1 (en) 2006-08-11 2010-10-14 The Regents Of The University Of California Microsurgery for Treatment of Glaucoma
US8043235B2 (en) 2006-08-22 2011-10-25 Schwartz Donald N Ultrasonic treatment of glaucoma
US7909781B2 (en) 2006-08-22 2011-03-22 Schwartz Donald N Ultrasonic treatment of glaucoma
US20080097214A1 (en) 2006-09-05 2008-04-24 Capistrano Labs, Inc. Ophthalmic ultrasound probe assembly
EP2059282A4 (en) 2006-09-06 2014-04-09 Innfocus Inc Apparatus, methods and devices for treatment of ocular disorders
US20080109037A1 (en) 2006-11-03 2008-05-08 Musculoskeletal Transplant Foundation Press fit suture anchor and inserter assembly
US20080147083A1 (en) 2006-11-09 2008-06-19 Vold Steven D Method and device for fixation of ophthalmic tissue
JP5748407B2 (en) * 2006-11-10 2015-07-15 グローコス コーポレーション Uveal sclera shunt
US20080114440A1 (en) 2006-11-13 2008-05-15 Sage Medical Technologies, Inc Methods and devices for deploying an implant in curved anatomy
FR2909883B1 (en) 2006-12-18 2012-11-30 Commissariat Energie Atomique MULTI-ARM SENSOR AND SYSTEM FOR DEEP ELECTRICAL NEUROSTIMULATION COMPRISING SUCH A PROBE
AR058947A1 (en) 2007-01-08 2008-03-05 Consejo Nac Invest Cient Tec IMPLANTABLE MICROAPARATE IN THE EYE TO RELIEF GLAUCOMA OR CAUSING DISEASE OF EYE OVERPRESSION
EP2124857B1 (en) 2007-01-09 2017-03-29 Fovea Pharmaceuticals Apparatus for intra-ocular injection
US20080200923A1 (en) 2007-01-09 2008-08-21 Richard Beckman Insertion tool for ocular implant and method for using same
DE102007004906A1 (en) 2007-01-25 2008-07-31 Universität Rostock eye implant
US8066768B2 (en) 2007-01-29 2011-11-29 Werblin Research & Development Corp. Intraocular lens system
US20080188860A1 (en) 2007-02-07 2008-08-07 Vold Steven D Ophthalmic surgical apparatus
WO2008096821A1 (en) 2007-02-08 2008-08-14 Kaneka Corporation Injector for eye
USD606190S1 (en) 2007-02-08 2009-12-15 Aderans Research Institute, Inc. Device for delivering cellular material and physiologic fluids to a subject
US20080208176A1 (en) 2007-02-27 2008-08-28 Ih-Houng Loh Instrument for injecting an ophthalmic device into an eye
WO2008112935A1 (en) 2007-03-13 2008-09-18 University Of Rochester Intraocular pressure regulating device
US20080243156A1 (en) 2007-03-30 2008-10-02 Thomas John Ophthalmic surgical instrument & surgical methods
US20080255545A1 (en) 2007-04-10 2008-10-16 Mansfield John M Apparatus and method for treating the inside of an eye
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
WO2008154502A1 (en) 2007-06-07 2008-12-18 Yale University Uveoscleral drainage device
WO2008151328A2 (en) 2007-06-08 2008-12-11 Cornell University Microprobes
EP2173289A4 (en) 2007-07-17 2010-11-24 Transcend Medical Inc Ocular implant with hydrogel expansion capabilities
US20090043242A1 (en) 2007-08-07 2009-02-12 Becton, Dickinson And Company Instruments and methods for implanting corneal implant via extra-and intra-cameral routes
US8945103B2 (en) 2007-10-30 2015-02-03 Iridex Corporation Contact probe for the delivery of laser energy
US8083759B2 (en) 2007-11-02 2011-12-27 Refocus Ocular, Inc. Apparatuses and methods for forming incisions in ocular tissue
USD592746S1 (en) 2007-11-08 2009-05-19 Alimera Sciences Ocular implantation device
US9849027B2 (en) 2007-11-08 2017-12-26 Alimera Sciences, Inc. Ocular implantation device
US20090124973A1 (en) 2007-11-09 2009-05-14 D Agostino Eduardo Insertion mechanism for use with a syringe
US8512404B2 (en) 2007-11-20 2013-08-20 Ivantis, Inc. Ocular implant delivery system and method
US9375347B2 (en) 2007-11-23 2016-06-28 Ecole Polytechnique Federale De Lausanne (Epfl) Non-invasively adjustable drainage device
US20090137992A1 (en) 2007-11-27 2009-05-28 Ravi Nallakrishnan Apparatus and Method for Treating Glaucoma
EP3108933B1 (en) 2008-01-07 2019-09-18 Salutaris Medical Devices, Inc. Devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye
USD592846S1 (en) 2008-01-14 2009-05-26 Payless Shoesource Worldwide, Inc. Portion of a shoe upper
US9539138B2 (en) 2008-01-30 2017-01-10 Takaya TANAKA Method of ophthalmic surgery and kit therefor
US8109896B2 (en) 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
JP2011513002A (en) 2008-03-05 2011-04-28 イバンティス インコーポレイテッド Method and apparatus for treating glaucoma
US20110082385A1 (en) 2008-04-17 2011-04-07 Yale University Method for implanting intraocular pressure sensor
US20090287233A1 (en) 2008-05-15 2009-11-19 Huculak John C Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery
EP2291155B1 (en) 2008-05-15 2013-08-28 Mynosys Cellular Devices, Inc. Ophthalmic surgical device for capsulotomy
ES2640867T3 (en) 2008-06-25 2017-11-07 Novartis Ag Eye implant with ability to change shape
CN102238926B (en) 2008-12-05 2015-09-16 伊万提斯公司 For ocular implants being transported to the method and apparatus in eyes
US20120257167A1 (en) 2008-12-17 2012-10-11 Glaukos Corporation Gonioscope for improved viewing
WO2010077987A1 (en) 2008-12-17 2010-07-08 Glaukos Corporation Gonioscope for improved viewing
CH700161A2 (en) 2008-12-22 2010-06-30 Grieshaber Ophthalmic Res Foun IMPLANT FOR INTRODUCING into Schlemm's canal AN EYE.
US8545554B2 (en) 2009-01-16 2013-10-01 Allergan, Inc. Intraocular injector
EP2548538B1 (en) 2009-01-28 2020-04-01 Alcon Inc. Implantation systems for ocular implants with stiffness qualities
CN102387753B (en) * 2009-02-10 2015-04-15 普西维达美国公司 Ocular trocar assembly
WO2010093945A2 (en) 2009-02-13 2010-08-19 Glaukos Corporation Uveoscleral drug delivery implant and methods for implanting the same
WO2010115101A1 (en) 2009-04-03 2010-10-07 Transcend Medical, Inc. Ocular implant delivery systems and methods
EP4289416A3 (en) 2009-05-18 2024-01-03 Dose Medical Corporation Drug eluting ocular implant
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
AU2010271274B2 (en) * 2009-07-09 2015-05-21 Alcon Inc. Single operator device for delivering an ocular implant
AU2010271218B2 (en) 2009-07-09 2017-02-02 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
US8535333B2 (en) 2009-07-29 2013-09-17 Transcend Medical, Inc. Ocular implant applier and methods of use
US20110118835A1 (en) 2009-08-13 2011-05-19 Matthew Silvestrini Branched ocular implant
US8951221B2 (en) 2009-08-20 2015-02-10 Grieshaber Ophthalmic Research Foundation Method and device for the treatment of glaucoma
US8419673B2 (en) 2009-09-21 2013-04-16 Alcon Research, Ltd. Glaucoma drainage device with pump
EP2480186A1 (en) 2009-09-21 2012-08-01 Vidus Ocular, Inc. Uveoscleral drainage device
US20110071454A1 (en) 2009-09-21 2011-03-24 Alcon Research, Ltd. Power Generator For Glaucoma Drainage Device
US8721580B2 (en) 2009-09-21 2014-05-13 Alcon Research, Ltd. Power saving glaucoma drainage device
US8257295B2 (en) 2009-09-21 2012-09-04 Alcon Research, Ltd. Intraocular pressure sensor with external pressure compensation
US8545431B2 (en) 2009-09-21 2013-10-01 Alcon Research, Ltd. Lumen clearing valve for glaucoma drainage device
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
EP2490621A4 (en) 2009-10-23 2013-04-03 Ivantis Inc Ocular implant system and method
US8771216B2 (en) 2009-11-06 2014-07-08 University Hospitals Of Cleveland Fluid communication device and method of use thereof
US8845572B2 (en) 2009-11-13 2014-09-30 Grieshaber Ophthalmic Research Foundation Method and device for the treatment of glaucoma
US8372423B2 (en) 2009-11-25 2013-02-12 Healionics Corporation Implantable medical devices having microporous surface layers and method for reducing foreign body response to the same
US20110144641A1 (en) 2009-12-15 2011-06-16 Alcon Research, Ltd. High-Intensity Pulsed Electric Field Vitrectomy Apparatus
USD645490S1 (en) 2009-12-16 2011-09-20 Glaukos Corporation Gonioscopic system including an optical element attachment
USD645489S1 (en) 2009-12-16 2011-09-20 Glaukos Corporation Gonioscopic system including an optical element attachment
US20110202049A1 (en) 2010-02-18 2011-08-18 Alcon Research, Ltd. Small Gauge Ablation Probe For Glaucoma Surgery
US20110230877A1 (en) 2010-03-16 2011-09-22 Alcon Research, Ltd. Pulsed Electric Field Probe for Glaucoma Surgery
US20110245753A1 (en) 2010-04-05 2011-10-06 Sunalp Murad A Apparatus and method for lowering intraocular pressure in an eye
PT2575715E (en) 2010-05-27 2014-12-22 Ellex Iscience Inc Device for placing circumferential implant in schlemm's canal
US8444589B2 (en) 2010-06-09 2013-05-21 Transcend Medical, Inc. Ocular implant with fluid outflow pathways having microporous membranes
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
WO2011163505A1 (en) 2010-06-23 2011-12-29 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
WO2012006053A1 (en) 2010-06-29 2012-01-12 Kullervo Henrik Hynynen Thermal therapy apparatus and method using focused ultrasonic sound fields
US8449490B2 (en) 2010-09-11 2013-05-28 Aleeva Medical Inc. Disc shunt delivery with stepped needle
US9370444B2 (en) 2010-10-12 2016-06-21 Emmett T. Cunningham, JR. Subconjunctival conformer device and uses thereof
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
EP2627292B1 (en) 2010-10-15 2018-10-10 Clearside Biomedical, Inc. Device for ocular access
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US9668915B2 (en) 2010-11-24 2017-06-06 Dose Medical Corporation Drug eluting ocular implant
WO2012099873A1 (en) 2011-01-18 2012-07-26 Minipums, Llc Surgical implantation instrument
US20120283557A1 (en) 2011-05-05 2012-11-08 Berlin Michael S Methods and Apparatuses for the Treatment of Glaucoma using visible and infrared ultrashort laser pulses
US20120310137A1 (en) 2011-06-02 2012-12-06 Silvestrini Thomas A Eye shunt with porous structure
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
EP4193907A1 (en) 2011-09-13 2023-06-14 Glaukos Corporation Intraocular physiological sensor
US8753305B2 (en) 2011-12-06 2014-06-17 Alcon Research, Ltd. Bubble-driven IOP control system
US8771220B2 (en) 2011-12-07 2014-07-08 Alcon Research, Ltd. Glaucoma active pressure regulation shunt
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US8579848B2 (en) 2011-12-09 2013-11-12 Alcon Research, Ltd. Active drainage systems with pressure-driven valves and electronically-driven pump
US20130150777A1 (en) 2011-12-12 2013-06-13 Sebastian Böhm Glaucoma Drainage Devices Including Vario-Stable Valves and Associated Systems and Methods
US8603024B2 (en) 2011-12-12 2013-12-10 Alcon Research, Ltd. Glaucoma drainage devices including vario-stable valves and associated systems and methods
US9339187B2 (en) 2011-12-15 2016-05-17 Alcon Research, Ltd. External pressure measurement system and method for an intraocular implant
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US9101444B2 (en) 2012-01-12 2015-08-11 Innfocus, Inc. Method, surgical kit and device for treating glaucoma
EP2814555B1 (en) 2012-02-13 2017-09-27 Iridex Corporation Reduction of intraocular pressure in the eye using a tubular clip
CA2868341C (en) 2012-03-26 2021-01-12 Glaukos Corporation System and method for delivering multiple ocular implants
DK2854708T3 (en) 2012-06-04 2017-01-30 Alcon Pharmaceuticals Ltd DEVICE FOR INSTALLING AN INTRAOCULAR LENS AND PROCEDURE FOR EXTING AN INTRAOCULAR LENS FROM A PATTERN
WO2014078288A1 (en) 2012-11-14 2014-05-22 Transcend Medical, Inc. Flow promoting ocular implant
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
WO2014145021A1 (en) 2013-03-15 2014-09-18 Orange County Glaucoma, Pc Enhancement of aqueous flow
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
CA2930390A1 (en) 2013-11-15 2015-05-21 Glaukos Corporation Ocular implants configured to store and release stable drug formulations
US20150342875A1 (en) 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
WO2016154066A2 (en) 2015-03-20 2016-09-29 Glaukos Corporation Gonioscopic devices
US20180280194A1 (en) 2015-05-20 2018-10-04 Glaukos Corporation Therapeutic drug compositions and implants for delivery of same
US20190000673A1 (en) 2015-07-22 2019-01-03 Glaukos Corporation Ocular implants for reduction of intraocular pressure and methods for implanting same
US20180333296A1 (en) 2015-09-02 2018-11-22 Dose Medical Corporation Drug delivery implants as intraocular drug depots and methods of using same
WO2017040853A1 (en) 2015-09-02 2017-03-09 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
CA3022830A1 (en) 2016-04-20 2017-10-26 Harold Alexander Heitzmann Bioresorbable ocular drug delivery device
US10674906B2 (en) 2017-02-24 2020-06-09 Glaukos Corporation Gonioscopes
USD833008S1 (en) 2017-02-27 2018-11-06 Glaukos Corporation Gonioscope
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
WO2019068026A1 (en) 2017-09-29 2019-04-04 Glaukos Corporation Intraocular physiological sensor
AU2018346229A1 (en) 2017-10-06 2020-04-30 Glaukos Corporation Systems and methods for delivering multiple ocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus

Also Published As

Publication number Publication date
US20230089994A1 (en) 2023-03-23
US20160038338A1 (en) 2016-02-11
JP6703148B2 (en) 2020-06-03
AU2014235331B2 (en) 2019-03-07
US10188551B2 (en) 2019-01-29
US20150065940A1 (en) 2015-03-05
US20170312124A1 (en) 2017-11-02
US20190321220A1 (en) 2019-10-24
JP6561041B2 (en) 2019-08-14
EP2967993B1 (en) 2019-04-24
JP2016512101A (en) 2016-04-25
US9592151B2 (en) 2017-03-14
US11523938B2 (en) 2022-12-13
US10285853B2 (en) 2019-05-14
AU2014235331A1 (en) 2015-10-01
JP2019080949A (en) 2019-05-30
EP2967993A1 (en) 2016-01-20
WO2014151070A1 (en) 2014-09-25
CA2904068C (en) 2021-11-09

Similar Documents

Publication Publication Date Title
US11523938B2 (en) Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US20240065887A1 (en) Drug delivery implants as intraocular drug depots and methods of using same
AU2022201392B2 (en) Bioresorbable ocular drug delivery device
US20210015662A1 (en) Drug eluting ocular implant
JP6043834B2 (en) Drug-eluting intraocular implant
US20180028361A1 (en) Uveoscleral drug delivery implant and methods for implanting the same
EP3603590B1 (en) Implants with controlled drug delivery features

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190312