CA2571871C - Flow regulating implants - Google Patents

Flow regulating implants Download PDF

Info

Publication number
CA2571871C
CA2571871C CA2571871A CA2571871A CA2571871C CA 2571871 C CA2571871 C CA 2571871C CA 2571871 A CA2571871 A CA 2571871A CA 2571871 A CA2571871 A CA 2571871A CA 2571871 C CA2571871 C CA 2571871C
Authority
CA
Canada
Prior art keywords
implant
elongated
grooves
parts
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2571871A
Other languages
French (fr)
Other versions
CA2571871A1 (en
Inventor
Ira Yaron
Elie Dahan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcon Inc
Original Assignee
Optonol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optonol Ltd filed Critical Optonol Ltd
Publication of CA2571871A1 publication Critical patent/CA2571871A1/en
Application granted granted Critical
Publication of CA2571871C publication Critical patent/CA2571871C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment

Abstract

A flow regulating implant is provided with one or more grooves for allowing fluid flow. One or more grooves may have a constant or varying cross-section along its length. One or more grooves may have in it biodegradable material, absorbable material, and/or threads or sutures. A resilient band or coating may be placed around the implant or one or more grooves, to act as a pressure regulator. The implant may have a side projection, such as a side pin, for engaging tissue. The implant may comprise two or more parts that are held at a. distance from each other to allow fluid flow between the parts.

Description

FLOW REGULATING IMPLANTS
HELD OF THE INVENTION
[0001] The invention relates generally to flow regulating implants, for example ophthalmic implants for treatment of glaucoma.
BACKGROUND OF THE INVENTION
100021 U.S. Patent No. 5,868,697 discloses devices and methods for regulating fluid flow. The devices and methods are useful, for example, in the treatment of glaucoma, by providing for the flow of aqueous humor from the eye to reduce intraocular pressure (I0P).
[0003] As with the devices and methods disclosed in U.S. Patent No.
5,868,697, the devices and methods disclosed herein are also for regulating fluid flow.
The devices and methods disclosed herein are useful, for example, in the treatment of glaucoma, by providing for the flow of aqueous humor from the eye to reduce intraocular pressure (lOP).
SUMMARY OF THE INVENTION
[0004] In certain embodiments, the invention is directed to an improved flow regulating implant that has one or more grooves for allowing fluid flow.
[0005] In certain embodiments, one or more grooves may have a constant cross-section along its length.
[0006] In certain embodiments, one or more grooves may have a varying cross-section along its length. For example, one or more grooves may be tapered, as a funnel. The wider end may be at the inlet end or the outlet end.
[0007] In certain embodiments, one or more grooves may have in it biodegradable material, absorbable material, and/or threads or sutures.
[0008] In certain embodiments, a resilient band or coating may be placed around the implant or one or more grooves, to act as a pressure regulator.
[0009] In certain embodiments, in addition to one or more grooves, the implant may have a tube passage running through it. The tube passage may have in it biodegradable material, absorbable material, and/or threads or sutures.

[00010] In certain embodiments, the implant may have a side projection, such as a side pin, for engaging tissue. The side projection or pin may be useful for resisting rotation and/or firmly holding the implant within the tissue.
[00011] In certain embodiments, the implant may comprise two or more parts that BRIEF DESCRIPTION OF THE DRAWINGS
[00012] FIG. 1 is a perspective view of a first embodiment of a flow regulating implant;
[00014] FIG. 3 is an alternative perspective view of the flow regulating implant of FIG. 1;
[00015] FIG. 4 is a perspective view of the flow regulating implant of FIG. 1, [00016] FIG. 5 is a perspective view of the flow regulating implant of FIG. 1, with threads or sutures in the side grooves;
[00017] FIG. 6 is a perspective view of the flow regulating implant of FIG. 1, with a flow regulating band or coating around the implant;
[00021] FIG. 10 is a perspective view of an alternative embodiment of a flow regulating implant with side grooves, with a tube passage running through the 30 implant;
[00022] FIG. 11 is a perspective view of the flow regulating implant of FIG.
10, with a thread or suture in the tube passage;
2 [00023] FIG. 12 is a perspective view of an alternative embodiment of a flow regulating implant, with a side pin;
[00024] FIG. 13 is a perspective view of an alternative embodiment of a flow regulating implant, comprising two parts that are held at a distance from each other to allow fluid flow between the parts;
[00025] FIG. 14 is a perspective view of an alternative embodiment of a flow regulating implant, comprising two parts that are held at a distance from each other to allow fluid flow between the parts, wherein the two parts may be pushed together or moved apart.
DETAILED DESCRIPTION
[00026] FIGS. 1 to 3 illustrate a first embodiment of a flow regulating implant.
The illustrated implant is in the form of an intraocular implant 10. The implant 10 comprises a shaft 11 and a flange (or plate or disk) 12. The cross-section of the shaft may take any suitable shape, for example square, rectangular, ellipsoidal, circular, or an irregular shape. In this illustrated embodiment, the plane of the flange 12 forms an angle with the shaft 11 that corresponds generally to the angle between the surface of the sclera of an eye and the intended axis of insertion of the implant 10. The flange 12 limits the depth of insertion and stabilizes the device. The angling of the flange 12 helps limit or prevent rotation of the device. In certain applications, it may be desired to remove the device, in which case the flange may be used for that purpose.
[00027] The implant 10 has an inlet end 13 and an outlet end 14. The flange 12 is connected to the shaft 11 at the outlet end 14 of the implant 10. The implant 10 may have one or more retention projections 15 for retaining the implant 10 after insertion. The retention projection(s) 15 may take any suitable form.
[00028] In the illustrated embodiment, the shaft 11 has a rounded tip at the inlet end 13 of the implant 10. It will be appreciated that the tip may take other suitable forms. For example, the tip may be a needle-like tip formed by a beveled surface, angled sharply for easy insertion into the eyeball.
[00029] The implant 10 has two side grooves 16A, 16B. In the illustrated embodiment, the side grooves 16A, 16B extend the full length of the implant 10,
3 from the inlet end 13 to the outlet end 14. The side grooves 16A, 16B are in the side of the shaft 11 and extend through the flange 12.
[00030] An implant in accordance with the invention may be inserted by methods disclosed in U.S. Patent No. 5,868,697. The insertion of the implant is not restricted to those methods. In certain instances, it may be desirable to implant the device such that the flange is located under scleral flap, i.e., a flap of tissue cut from the sclera. In such a method, a scleral flap is carefully cut from the sclera. The cut is preferably not made all the way through the sclera to the anterior chamber. Rather, the cut extends only part way through, to create the scleral flap that can be moved away to expose a place for insertion of the implant. With the scleral flap lifted, the implant is inserted in the intended implantation site, with the flange under the scleral flap. The implantation of the device under a scleral flap may assist in absorption of fluid. It also may assist in retention of the device.
[00031] With the device as illustrated in FIGS. 1 to 3, in operation, the grooves 16A, 16B form passageways for fluid to flow from the inlet end 13 toward the outlet end 14 of the implant 10. In the case of an intraocular implant, the aqueous humor in the eye can flow along the grooves from the inlet end 13 toward the outlet end 14.
[00032] The grooves 16A, 16B are directly adjacent the tissue into which the implant 10 is implanted. Thus, for example, the scleral tissue of the eye will surround the implant. In this manner, the sclera] tissue can function as a valve to control the flow of fluid out of the eye. When the pressure in the anterior chamber is low, the tissue is close around the implant and in the grooves to block or limit the flow of fluid along the grooves. When the pressure in the anterior chamber is elevated, the fluid exerts pressure on the tissue to clear the passageway along the grooves, and fluid will flow along the grooves between the implant device and the tissue.
[00033] With the grooves, the aqueous humor flowing out of the anterior chamber is allowed to directly contact the scleral tissue, which allows for direct absorption of the aqueous humor by the sclera. The fluid may be absorbed by the sclera or may flow out, for example underneath the conjunctiva.
[00034] The groove(s) may take any suitable form. For example, one or more grooves may be shaped as a funnel, tapering from one end to the other. The wider
4 end may be at the outlet end or the inlet end, depending on the desired application.
Other modifications to the size, shape, and/or cross-sectional configuration of the groove(s) may be made.
[00035] It will be appreciated that in addition to the flow regulation characteristics, the grooves may serve the additional benefit of limiting or preventing rotation of the device. It will also be appreciated that non-circular cross-sections for the shaft will also help limit or prevent rotation of the device.
For example, a cross-section having comers, like a square, rectangular or other polygonal cross-section, will help limit or prevent rotation. In addition, a cross-section with different dimensions in different direction, like an elliptical or rectangular cross-section, will help limit or prevent rotation. The grooves may help to limit or prevent rotation even with an otherwise circular cross-section for the shaft. The tissue in the gutters may help hold the position of the device.
[000361 FIG. 4 illustrates the flow regulating implant of FIG. 1, with material 17
5 in the side grooves. In this example, the material 17 may be a biodegradable material, an absorbable material, or a material that may be ablated with a laser.
Such materials may act to block or limit flow initially and to allow more flow over time. For example, a physician may ablate the laser-ablatable material at some period of time after implantation, or in increments over time. The biodegradable or absorbable material may act to block flow upon initial implantation and to erode or degrade over time to allow more flow. Further descriptions of the use of such materials in flow regulating implants are provided in U.S. Patent Nos.
6,203,513 and 6,558,342_ [000371 FIG. 5 illustrates the flow regulating implant of FIG. 1, with threads or sutures 18 in the side grooves. The threads or sutures 18 may act to block or limit flow initially and to allow more flow over time. For example, a physician may remove the threads or sutures 18 at some period of time after implantation, or may remove one at a time in increments over time. It will be appreciated that more than one thread or suture 18 may be placed in each groove. Further descriptions of the use of threads or sutures in flow regulating implants are provided in U.S.
Patent No.
6,558,342.
[00038] FIG. 6 illustrates the flow regulating implant of FIG. 1, with a flow regulating band or coating 19 around the implant. The band or coating 19 may extend over only part of the length of the implant, as illustrated, or, alternatively, it may extend over the full length of the implant. The band or coating 19 may be shaped to extend into the grooves. The band or coating 19 is resilient and acts as valve to control the flow of fluid out of the eye. When the pressure in the anterior chamber is low, the band or coating 19 is close around the implant and in the grooves to block or limit the flow of fluid along the grooves. When the pressure in the anterior chamber is elevated, the fluid exerts pressure on the band or coating 19 to clear the passageway along the grooves, and fluid will flow along the grooves between the implant shaft and the band or coating 19.
[00039] FIG. 7 illustrates another embodiment of a flow regulating implant.
This flow regulating implant 20 is similar to the flow regulating implant 10. The flow regulating implant 20 has a shaft 21, a flange 22, and grooves 26A, 26B
(groove 26B not shown). In this embodiment, the flange has holes 27A, 27B in it at the outlet ends of the grooves 26A, 26B, respectively. These holes allow the flow of fluid away from the implant.
[00040] FIG. 8 illustrates another embodiment of a flow regulating implant.
This flow regulating implant 30 is similar to the flow regulating implants described above. The flow regulating implant 30 has a shaft 31, a flange 32, and grooves 36A, 36B. In this embodiment, the flange has a hole 38 in it. With this hole, a suture may be used to attach the implant to tissue to fix it in place.
[00041] FIG. 9 illustrates a flow regulating implant 40. This flow regulating implant 40 is similar to the flow regulating implants described above. The flow regulating implant 40 has a shaft 41, a flange 42, and grooves 46A, 46B. In this embodiment, the flange 42 has a different shape, which may be useful in certain applications.
[00042] FIG. 10 is a perspective view of an alternative embodiment of a flow regulating implant with side grooves. The implant 50 has tube passage 51 running through the implant. This tube passage 51 provides an additional passageway for fluid flow. The tube passage may have in it absorbable, biodegradable, laser-ablatable and/or removable material for blocking or partially obstructing fluid flow, and for allowing further flow over time. FIG. 11 illustrates the flow regulating implant of FIG. 10, with a thread or suture 58 in the tube passage 51.

[00043] FIG. 12 is a perspective view of an alternative embodiment of a flow regulating implant 60, with a side projection in the form of a side pin 68.
Upon implantation, the pin 68 is fixed in the scleral tissue and serves to resist rotation of the device. The pin 68 may also assist in holding the device in the sclera, providing a sealing of the sclera around the shaft of the implant to prevent undesired leakage.
The pin also fixes the device to prevent the possibility of the device pressing on and eroding the conjunctiva.
[00044] The projection or pin could be may of any suitable material, and it could be removable or changeable. For example, the projection or pin could be made of absorbable, biodegradable, laser-ablatable and/or removable material. The projection or pin 68 could be movable with a hole in the shaft 61, so that its length of projection from the shaft 61 could be adjustable. Also, a slot or other holes could be provided to allow adjustment of the positioning of the projection or pin.
[00045] FIG. 13 is a perspective view of an alternative embodiment of a flow regulating implant. The implant 70 comprises two parts 71, 72 that are held at a distance from each other to allow fluid flow between the parts. In implant 70, the two parts 71, 72 are joined to each other by two cylinders 73A, 73B. The implant may be formed as one piece, or the parts may be joined by any suitable means, for example welding. The two parts 71, 72 may be joined by just one cylinder or by parts of other shapes, for example, one or more spheres. Alternatively, the two parts may be shaped to be joined directly together with a space between them. It will be appreciated that the space 74 between the parts 71, 72 provides a space for the flow of fluid and allows further fluid contact with the sclera.
[00046] FIG. 14 illustrates a flow regulating implant 80 comprising two parts 81, 82 that are formed together as parts of a single, one-piece device. It will be appreciated that the space 84 between the parts 81, 82 provides a space for the flow of fluid and allows further fluid contact with the sclera, similar to the implant 70.
The two parts 81, 82 may be pushed together or moved apart, which can control the spacing and thus the fluid flow.
[00047] An implant constructed in accordance with the invention may be manufactured entirely from or covered with any suitable material, such as stainless steel, silicon, gold, nitinol, Teflon, tantalum, PMMA, or any other suitable metallic or polymeric or other material. The entire device may be made from a degradable
7 material. The device may be made by molding or any other suitable method of manufacture. The device may be manufactured as one piece or as separate pieces that are joined together. The implant may be coated with heparin or any other suitable coating.
[00048] Implants in accordance with the invention may be provided with other features and/or implanted with delivery devices and/or by other methods, for example those disclosed in U.S. Patent Nos. 5,868,697; 6,203,513 and 6,558,342, discussed above.
[00049] As will be appreciated by persons having ordinary skill in the art, the various embodiments of implants described hereinabove are given by way of example only. Various changes, modifications and variations may be applied to the described embodiments without departing from the scope of the invention, defined by the appended claims.
8

Claims (7)

CLAIMS:
1. An implant for regulating fluid flow, the implant comprising:
(a) an elongated portion comprising an insertion tip, an inlet and an outlet, a first elongated part and a second elongated part; wherein said insertion tip has a proximal end and a distal end, said proximal end of said insertion tip joining said first and second elongated parts, said first and second elongated parts disposed such that a greatest dimension thereof is a length thereof measured along an axial direction. and wherein a space extends along said elongated portion substantially in said axial direction between said first and second elongated parts, said space comprising said inlet disposed at said proximal end of said insertion tip and extending along said elongated portion substantially in said axial direction such that said space forms a flowpath from said inlet to said outlet;
wherein said elongated portion further comprises a first lateral side and a second lateral side, such that said space forms a channel from said first lateral side of said elongated portion to said second lateral side of said elongated portion; and (b) a flange attached to at least the first elongated part, the flange being located at the outlet of the elongated portion.
2. The implant of claim 1, wherein the flange projects from the first elongated part at an angle with respect to the first elongated part.
3. The implant of claim 1 or 2, wherein the first elongated part and the second elongated part are formed together as parts of a single, one-piece implant.
4, The implant of claim 1, wherein a distance between the first elongated part and the second elongated part is adjustable such that the first elongated part and second elongated part may be pushed together to a first position in which they are separated by a first distance and moved apart to a second position in which they are separated by a second distance greater than the first distance.
5. The implant of claim 4, wherein the flange projects from the first elongated part at an angle with respect to the first elongated part.
6. The implant of claim 4, wherein the first elongated part and the second elongated part are formed together as parts of a single, one-piece implant.
7. The implant of claim 1, wherein the first part and second part are joined to each other by an additional piece.
CA2571871A 2004-06-25 2005-06-16 Flow regulating implants Expired - Fee Related CA2571871C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/875,571 2004-06-25
US10/875,571 US7862531B2 (en) 2004-06-25 2004-06-25 Flow regulating implants
PCT/US2005/021123 WO2006012009A2 (en) 2004-06-25 2005-06-16 Flow regulating implants

Publications (2)

Publication Number Publication Date
CA2571871A1 CA2571871A1 (en) 2006-02-02
CA2571871C true CA2571871C (en) 2014-02-04

Family

ID=35116140

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2571871A Expired - Fee Related CA2571871C (en) 2004-06-25 2005-06-16 Flow regulating implants

Country Status (11)

Country Link
US (2) US7862531B2 (en)
EP (1) EP1765234B1 (en)
JP (1) JP4723577B2 (en)
KR (1) KR101280961B1 (en)
CN (2) CN100577127C (en)
AU (1) AU2005267539B2 (en)
CA (1) CA2571871C (en)
ES (1) ES2753384T3 (en)
IL (1) IL180170A0 (en)
SG (1) SG153828A1 (en)
WO (1) WO2006012009A2 (en)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313454B2 (en) * 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
BR0010055A (en) 1999-04-26 2002-04-09 Gmp Vision Solutions Inc Bypass device and use thereof
US6554119B2 (en) * 2000-02-07 2003-04-29 Progressive Tool & Industries Co. Flexible automotive assembly line and method
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US7135009B2 (en) 2001-04-07 2006-11-14 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US20040225250A1 (en) 2003-05-05 2004-11-11 Michael Yablonski Internal shunt and method for treating glaucoma
US7291125B2 (en) 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
US20050194303A1 (en) * 2004-03-02 2005-09-08 Sniegowski Jeffry J. MEMS flow module with filtration and pressure regulation capabilities
US7544176B2 (en) * 2005-06-21 2009-06-09 Becton, Dickinson And Company Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US7226540B2 (en) * 2004-02-24 2007-06-05 Becton, Dickinson And Company MEMS filter module
US7862531B2 (en) * 2004-06-25 2011-01-04 Optonol Ltd. Flow regulating implants
US20080108932A1 (en) * 2005-08-24 2008-05-08 Rodgers M Steven MEMS filter module with multi-level filter traps
US9084662B2 (en) 2006-01-17 2015-07-21 Transcend Medical, Inc. Drug delivery treatment device
ES2762239T3 (en) 2006-01-17 2020-05-22 Alcon Inc Glaucoma treatment device
EP3351211B1 (en) * 2006-07-11 2023-09-06 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders
US8911496B2 (en) * 2006-07-11 2014-12-16 Refocus Group, Inc. Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods
WO2008154502A1 (en) * 2007-06-07 2008-12-18 Yale University Uveoscleral drainage device
EP2173289A4 (en) 2007-07-17 2010-11-24 Transcend Medical Inc Ocular implant with hydrogel expansion capabilities
ES2640867T3 (en) 2008-06-25 2017-11-07 Novartis Ag Eye implant with ability to change shape
US8353856B2 (en) 2008-11-05 2013-01-15 Abbott Medical Optics Inc. Glaucoma drainage shunts and methods of use
EP2548538B1 (en) 2009-01-28 2020-04-01 Alcon Inc. Implantation systems for ocular implants with stiffness qualities
AU2010229789B2 (en) 2009-03-26 2014-11-13 Johnson & Johnson Surgical Vision, Inc. Glaucoma shunts with flow management and improved surgical performance
WO2011008981A1 (en) * 2009-07-15 2011-01-20 Regents Of The University Of Minnesota Implantable devices for treatment of sinusitis
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
WO2011089605A2 (en) * 2010-01-22 2011-07-28 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Ocular shunt
CN103179927B (en) 2010-08-12 2016-09-07 南洋理工大学 Glaucoma Valve, for accommodating glaucoma valve housing and comprise the glaucoma drainage device of this valve and/or this housing
US8771220B2 (en) * 2011-12-07 2014-07-08 Alcon Research, Ltd. Glaucoma active pressure regulation shunt
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
CA2868341C (en) 2012-03-26 2021-01-12 Glaukos Corporation System and method for delivering multiple ocular implants
WO2013155252A1 (en) * 2012-04-11 2013-10-17 Baylor College Of Medicine Ophthalmic implant
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US8858491B2 (en) * 2012-05-23 2014-10-14 Alcon Research, Ltd. Pre-biased membrane valve
EP3228286A1 (en) 2012-09-17 2017-10-11 Novartis AG Expanding ocular impant devices
WO2014078288A1 (en) 2012-11-14 2014-05-22 Transcend Medical, Inc. Flow promoting ocular implant
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
CN105358105A (en) * 2013-03-14 2016-02-24 以色列哈尼塔镜片有限公司 Miniature glaucoma shunt
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
KR20150034010A (en) * 2013-09-25 2015-04-02 사회복지법인 삼성생명공익재단 An Apparatus for Treating Ocular Diseases Induced by Increased Intraocular Pressure
JP6393471B2 (en) * 2013-11-07 2018-09-19 テルモ株式会社 Medical treatment tool
US20150342875A1 (en) 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
EP3240510A4 (en) 2014-12-31 2018-09-19 Microoptx Inc. Glaucoma treatment devices and methods
WO2017040853A1 (en) 2015-09-02 2017-03-09 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
WO2017059272A1 (en) 2015-09-30 2017-04-06 Microoptx Inc. Dry eye treatment devices and methods
KR102573821B1 (en) * 2017-02-16 2023-08-31 마이크로서지컬 테크놀로지, 인코퍼레이티드 Apparatus, system and method for minimally invasive glaucoma surgery
CA3062857A1 (en) * 2017-05-14 2018-11-22 Navigate Cardiac Structures, Inc. Valved stent for orthotopic replacement of dysfunctional cardiac valve and delivery system
EP3638164B1 (en) * 2017-06-13 2023-05-10 Innfocus, Inc. Systems and apparatus for treatment of glaucoma
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
CA3070108A1 (en) 2017-07-20 2019-01-24 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
CN108542718B (en) * 2018-04-25 2019-07-26 张连存 A kind of wearable flexible lower limb exoskeleton based on negative pressure rotary pneumatic artificial-muscle
US11672701B2 (en) 2018-10-25 2023-06-13 Amo Groningen B.V. Bleb control glaucoma shunts
JP2022552284A (en) 2019-10-10 2022-12-15 シファメド・ホールディングス・エルエルシー Adjustable flow glaucoma shunt and related systems and methods
WO2021151007A1 (en) 2020-01-23 2021-07-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
CA3167488A1 (en) 2020-02-14 2021-08-19 Eric Schultz Shunting systems with rotation-based flow control assemblies, and associated systems and methods
US11737920B2 (en) 2020-02-18 2023-08-29 Shifamed Holdings, Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
JP2023522332A (en) 2020-04-16 2023-05-30 シファメド・ホールディングス・エルエルシー ADJUSTABLE GLAUCOMA TREATMENT DEVICES AND RELATED SYSTEMS AND METHODS
WO2022159723A1 (en) 2021-01-22 2022-07-28 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US15192A (en) * 1856-06-24 Tubular
US274447A (en) * 1883-03-20 William-kentish
US733152A (en) * 1902-08-30 1903-07-07 Murdoch Chisholm Empyema drainage device.
US1388172A (en) * 1920-03-18 1921-08-23 Simon M Craddock Veterinary surgical appliance
US2431587A (en) 1945-02-19 1947-11-25 Charles F Schnee Cannula button for surgical operations and method of use
US2555076A (en) * 1947-11-17 1951-05-29 Elijah R Crossley Instrument for use in performing surgical eye operations
US2867213A (en) * 1957-06-12 1959-01-06 Jr Paul A Thomas Flutter valve for drainage of the pleural cavity
US3159161A (en) 1962-11-14 1964-12-01 Ness Richard Alton Fistulizing canaliculus
US3310051A (en) * 1963-12-10 1967-03-21 Rudolf R Schulte Surgical reservoir for implantation beneath the skin
US3333588A (en) * 1964-07-06 1967-08-01 Rudolf R Schulte Brain ventricle cannula
US3272204A (en) 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3421509A (en) * 1965-12-17 1969-01-14 John M Fiore Urethral catheter
US3530860A (en) 1967-01-09 1970-09-29 Ponce De Leon Ear Method and apparatus for inserting a tube through the ear drum
US3589401A (en) * 1969-07-18 1971-06-29 Case Co J I Pressure modulating valve
US3915172A (en) 1970-05-27 1975-10-28 Ceskoslovenska Akademie Ved Capillary drain for glaucoma
US3788327A (en) * 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US3884238A (en) * 1972-06-19 1975-05-20 Malley Conor C O Apparatus for intraocular surgery
US3957035A (en) * 1972-09-08 1976-05-18 Jean Chassaing Ophthalmological device useful for eye surgery
US3890976A (en) * 1972-10-26 1975-06-24 Medical Products Corp Catheter tip assembly
US3913584A (en) 1974-06-28 1975-10-21 Xomox Corp Combination myringotomy scalpel, aspirator and otological vent tube inserter
US3938529A (en) * 1974-07-22 1976-02-17 Gibbons Robert P Indwelling ureteral catheter
US4093708A (en) * 1974-12-23 1978-06-06 Alza Corporation Osmotic releasing device having a plurality of release rate patterns
US3976077A (en) * 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4037604A (en) * 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4153058A (en) * 1977-07-05 1979-05-08 Nehme Alexander E Pleural decompression catheter
US4175563A (en) 1977-10-05 1979-11-27 Arenberg Irving K Biological drainage shunt
US4290426A (en) 1978-05-04 1981-09-22 Alza Corporation Dispenser for dispensing beneficial agent
US4299227A (en) 1979-10-19 1981-11-10 Lincoff Harvey A Ophthalmological appliance
US4303063A (en) 1980-03-06 1981-12-01 Stahl Norman O Ocular massage device
US4808183A (en) * 1980-06-03 1989-02-28 University Of Iowa Research Foundation Voice button prosthesis and method for installing same
US4402681A (en) 1980-08-23 1983-09-06 Haas Joseph S Artificial implant valve for the regulation of intraocular pressure
US4457757A (en) * 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
FR2514852B1 (en) * 1981-10-19 1985-09-27 Snecma FLUID DISPENSING MEMBER AND METHOD FOR PRODUCING THE BODY OF THIS MEMBER
US4474569A (en) 1982-06-28 1984-10-02 Denver Surgical Developments, Inc. Antenatal shunt
US4554918A (en) 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
IT8352816V0 (en) * 1983-01-07 1983-01-07 Ferrando Ugo Gardi Giovanni E SURGICAL MEDICAL APPLICATION CATHETER
HU187011B (en) * 1983-01-14 1985-10-28 Orvosi Mueszer Sz Trachea canula
SU1191227A1 (en) 1983-04-28 1985-11-15 Всесоюзный Научно-Исследовательский И Проектный Институт Технологии Химического И Нефтяного Аппаратостроения Line for manufacturing ribbed bimetallic pipes
US4538611A (en) 1983-06-13 1985-09-03 Kelman Charles D Surgical instrument and method of cutting a lens of an eye
NL8302541A (en) * 1983-07-15 1985-02-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MADE ACCORDING TO THE METHOD
US4587954A (en) * 1983-12-29 1986-05-13 Habley Medical Technology Corporation Elastomeric prosthetic sphincter
US4563779A (en) * 1984-01-27 1986-01-14 Kelman Charles D Corneal implant and method of making the same
US4578058A (en) * 1984-04-02 1986-03-25 Grandon Stanley C Intraocular catheter apparatus and method of use
US4787885A (en) 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4634418A (en) * 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4660546A (en) * 1984-11-07 1987-04-28 Robert S. Herrick Method for treating for deficiency of tears
US4604087A (en) * 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4781675A (en) 1985-11-27 1988-11-01 White Thomas C Infusion cannula
US4692142A (en) 1986-02-24 1987-09-08 Dignam Bernard J Sutureless infusion cannula for ophthalmic surgery
US4792336A (en) * 1986-03-03 1988-12-20 American Cyanamid Company Flat braided ligament or tendon implant device having texturized yarns
NZ215409A (en) * 1986-03-07 1989-02-24 Anthony Christopher Be Molteno Implant for drainage of aqueous humour in glaucoma
US4964850A (en) 1986-05-07 1990-10-23 Vincent Bouton Method for treating trans-nasal sinus afflictions using a double t-shaped trans-nasal aerator
US4826478A (en) * 1986-06-23 1989-05-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4722724A (en) * 1986-06-23 1988-02-02 Stanley Schocket Anterior chamber tube shunt to an encircling band, and related surgical procedure
US4909783A (en) * 1986-07-16 1990-03-20 Morrison David P Intra-ocular pressure apparatus
US4751926A (en) * 1986-09-12 1988-06-21 Dow Corning Wright Corporation Instrument for subcutaneous insertion of an injection reservoir
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4886488A (en) 1987-08-06 1989-12-12 White Thomas C Glaucoma drainage the lacrimal system and method
EP0375676A1 (en) * 1987-08-19 1990-07-04 BERG, Olle A drainage tube for sinus maxillaris, a means for its insertion and a means for making a hole for its positioning
US4813941A (en) * 1987-09-03 1989-03-21 Leslie Shea Pneumothorax treatment device
US4934363A (en) * 1987-12-15 1990-06-19 Iolab Corporation Lens insertion instrument
US4888016A (en) * 1988-02-10 1989-12-19 Langerman David W "Spare parts" for use in ophthalmic surgical procedures
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US5098393A (en) * 1988-05-31 1992-03-24 Kurt Amplatz Medical introducer and valve assembly
US4915684A (en) * 1988-06-21 1990-04-10 Mackeen Donald L Method and apparatus for modulating the flow of lacrimal fluid through a punctum and associated canaliculus
US5616118A (en) * 1988-10-07 1997-04-01 Ahmed; Abdul M. Uniquely shaped ophthalmological device
US5071408A (en) 1988-10-07 1991-12-10 Ahmed Abdul Mateen Medical valve
IT1227176B (en) 1988-10-11 1991-03-20 Co Pharma Corp Srl DEVICE FOR FIXING A CATHETER TO THE CRANIAL TECA FOR EXTERNAL LIQUOR DERIVATION
US4959048A (en) 1989-01-17 1990-09-25 Helix Medical, Inc. Lacrimal duct occluder
US5000731A (en) * 1989-03-30 1991-03-19 Tai-Ting Wong Shunting device adopted in the intracranial shunting surgical operation for the treatment of hydrocephalus
US5053040A (en) 1989-11-09 1991-10-01 Goldsmith Iii Manning M Method of performing a myringotomy
US4946436A (en) * 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5167620A (en) 1989-11-28 1992-12-01 Alexandar Ureche Eye surgery methods
US5106367A (en) * 1989-11-28 1992-04-21 Alexander Ureche Eye surgery apparatus with vacuum surge suppressor
US5092837A (en) * 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US4968296A (en) 1989-12-20 1990-11-06 Robert Ritch Transscleral drainage implant device for the treatment of glaucoma
US5073163A (en) 1990-01-29 1991-12-17 Lippman Myron E Apparatus for treating glaucoma
US5171270A (en) 1990-03-29 1992-12-15 Herrick Robert S Canalicular implant having a collapsible flared section and method
US5041081A (en) * 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5127901A (en) * 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5476445A (en) 1990-05-31 1995-12-19 Iovision, Inc. Glaucoma implant with a temporary flow restricting seal
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5397300A (en) * 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5098438A (en) * 1990-08-23 1992-03-24 Siepser Steven B Procedures for intraocular surgery
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5454796A (en) 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5242449A (en) 1991-04-23 1993-09-07 Allergan, Inc. Ophthalmic instrument
US5207660A (en) * 1991-04-26 1993-05-04 Cornell Research Foundation, Inc. Method for the delivery of compositions to the ocular tissues
US5358492A (en) 1991-05-02 1994-10-25 Feibus Miriam H Woven surgical drain and method of making
US6007511A (en) 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
US5300020A (en) * 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5326345A (en) * 1991-08-14 1994-07-05 Price Jr Francis W Eye filtration prostheses
US5171213A (en) * 1991-08-14 1992-12-15 Price Jr Francis W Technique for fistulization of the eye and an eye filtration prosthesis useful therefor
US5360399A (en) 1992-01-10 1994-11-01 Robert Stegmann Method and apparatus for maintaining the normal intraocular pressure
WO1993014702A1 (en) * 1992-01-29 1993-08-05 Stewart Gregory Smith Method and apparatus for phaco-emulsification
US5283063A (en) * 1992-01-31 1994-02-01 Eagle Vision Punctum plug method and apparatus
US5190552A (en) * 1992-02-04 1993-03-02 Kelman Charles D Slotted tube injector for an intraocular lens
US5217486A (en) * 1992-02-18 1993-06-08 Mitek Surgical Products, Inc. Suture anchor and installation tool
US5346464A (en) 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
US5221278A (en) * 1992-03-12 1993-06-22 Alza Corporation Osmotically driven delivery device with expandable orifice for pulsatile delivery effect
US5380290A (en) * 1992-04-16 1995-01-10 Pfizer Hospital Products Group, Inc. Body access device
US5322504A (en) * 1992-05-07 1994-06-21 United States Surgical Corporation Method and apparatus for tissue excision and removal by fluid jet
US5355871A (en) 1992-09-11 1994-10-18 Dexide, Inc. Elastomeric controller for endoscopic surgical instruments
IL106946A0 (en) 1992-09-22 1993-12-28 Target Therapeutics Inc Detachable embolic coil assembly
WO1994007436A1 (en) * 1992-09-30 1994-04-14 Vladimir Feingold Intraocular lens insertion system
US5370607A (en) 1992-10-28 1994-12-06 Annuit Coeptis, Inc. Glaucoma implant device and method for implanting same
ES2141746T3 (en) 1992-11-06 2000-04-01 Grieshaber & Co Ag OPHTHALMOLOGICAL ASPIRATION AND IRRIGATION SYSTEM.
US5338291A (en) * 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
USD356867S (en) * 1993-03-10 1995-03-28 Hood Laboratories Device for controlling intraocular fluid pressure
US5342370A (en) * 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
US5433714A (en) * 1993-04-06 1995-07-18 Bloomberg; Leroy Topical anesthesia method for eye surgery, and applicator therefor
KR950702068A (en) * 1993-04-06 1995-05-17 쓰지 가오루 Package for SEMICONDUCTOR CHIP
DE4313245C2 (en) 1993-04-23 1997-03-27 Geuder Hans Gmbh Hollow needle for an ophthalmic surgical instrument
CN2169402Y (en) * 1993-10-28 1994-06-22 五河县人民医院 Anti-glaucoma drain apparatus
IL109499A (en) * 1994-05-02 1998-01-04 Univ Ramot Implant device for draining excess intraocular fluid
FR2721499B1 (en) * 1994-06-22 1997-01-03 Opsia Trabeculectomy implant.
US5520631A (en) * 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5704907A (en) * 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US6102045A (en) 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US5522845A (en) * 1994-09-27 1996-06-04 Mitek Surgical Products, Inc. Bone anchor and bone anchor installation
US5601094A (en) * 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US5660205A (en) * 1994-12-15 1997-08-26 Epstein; Alan B. One-way valve
US5433701A (en) * 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
US5558630A (en) 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
US5626558A (en) * 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
IL113723A (en) * 1995-05-14 2002-11-10 Optonol Ltd Intraocular implant
US5968058A (en) 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
CN1283324C (en) * 1995-05-14 2006-11-08 奥普通诺尔有限公司 Intraocular implant, delivery device, and method of implantation
US5662600A (en) 1995-09-29 1997-09-02 Pudenz-Schulte Medical Research Corporation Burr-hole flow control device
US5741292A (en) * 1995-10-26 1998-04-21 Eagle Vision Punctum dilating and plug inserting instrument with push-button plug release
US5709698A (en) * 1996-02-26 1998-01-20 Linvatec Corporation Irrigating/aspirating shaver blade assembly
US5665101A (en) * 1996-04-01 1997-09-09 Linvatec Corporation Endoscopic or open lipectomy instrument
US5865831A (en) * 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
US5980480A (en) * 1996-07-11 1999-11-09 Cs Fluids, Inc. Method and apparatus for treating adult-onset dementia of the alzheimer's type
US5807240A (en) 1996-09-24 1998-09-15 Circon Corporation Continuous flow endoscope with enlarged outflow channel
US6007510A (en) 1996-10-25 1999-12-28 Anamed, Inc. Implantable devices and methods for controlling the flow of fluids within the body
FR2757068B1 (en) 1996-12-13 1999-04-23 Jussmann Alberto SELF-FIXING DRAIN
GB9700390D0 (en) * 1997-01-10 1997-02-26 Biocompatibles Ltd Device for use in the eye
US5713844A (en) * 1997-01-10 1998-02-03 Peyman; Gholam A. Device and method for regulating intraocular pressure
US5893837A (en) * 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US6050970A (en) * 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US6004302A (en) 1997-08-28 1999-12-21 Brierley; Lawrence A. Cannula
US6007578A (en) 1997-10-08 1999-12-28 Ras Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US6203513B1 (en) * 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US6168575B1 (en) * 1998-01-29 2001-01-02 David Pyam Soltanpour Method and apparatus for controlling intraocular pressure
BR0010055A (en) 1999-04-26 2002-04-09 Gmp Vision Solutions Inc Bypass device and use thereof
US20050119601A9 (en) * 1999-04-26 2005-06-02 Lynch Mary G. Shunt device and method for treating glaucoma
US6558342B1 (en) * 1999-06-02 2003-05-06 Optonol Ltd. Flow control device, introducer and method of implanting
US6221078B1 (en) * 1999-06-25 2001-04-24 Stephen S. Bylsma Surgical implantation apparatus
US6203512B1 (en) * 1999-06-28 2001-03-20 The Procter & Gamble Company Method for opening a packaging device and retrieving an interlabial absorbent article placed therein
US7008396B1 (en) 1999-09-03 2006-03-07 Restorvision, Inc. Ophthalmic device and method of manufacture and use
JP3292953B2 (en) 1999-10-15 2002-06-17 エヌイーシーインフロンティア株式会社 Redundant transmission line device and redundant transmission line system
US6245077B1 (en) * 2000-01-21 2001-06-12 Exmoor Plastics Ltd. Universal myringotomy tube/aural grommet inserter and methods
US20020143284A1 (en) 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US6730056B1 (en) 2000-09-21 2004-05-04 Motorola, Inc. Eye implant for treating glaucoma and method for manufacturing same
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
JP2003102765A (en) * 2001-09-28 2003-04-08 Takashi Okano Ocular tension adjusting member and method of adjusting ocular tension
US20040147870A1 (en) 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
CN100591372C (en) * 2002-07-19 2010-02-24 耶鲁大学 Uveoscleral drainage device
CA2529495C (en) * 2003-06-16 2013-02-05 Solx, Inc. Shunt for the treatment of glaucoma
US20060069340A1 (en) 2003-06-16 2006-03-30 Solx, Inc. Shunt for the treatment of glaucoma
US7862531B2 (en) * 2004-06-25 2011-01-04 Optonol Ltd. Flow regulating implants
ES2762239T3 (en) 2006-01-17 2020-05-22 Alcon Inc Glaucoma treatment device
US20080108933A1 (en) 2006-06-30 2008-05-08 Dao-Yi Yu Methods, Systems and Apparatus for Relieving Pressure in an Organ

Also Published As

Publication number Publication date
WO2006012009A2 (en) 2006-02-02
US20050288617A1 (en) 2005-12-29
CN101732125A (en) 2010-06-16
AU2005267539A1 (en) 2006-02-02
SG153828A1 (en) 2009-07-29
JP2008504063A (en) 2008-02-14
KR20070031943A (en) 2007-03-20
US20080077071A1 (en) 2008-03-27
WO2006012009A3 (en) 2006-03-09
ES2753384T3 (en) 2020-04-08
CN100577127C (en) 2010-01-06
JP4723577B2 (en) 2011-07-13
CA2571871A1 (en) 2006-02-02
KR101280961B1 (en) 2013-07-02
US7862531B2 (en) 2011-01-04
EP1765234B1 (en) 2019-10-16
IL180170A0 (en) 2007-06-03
US8034016B2 (en) 2011-10-11
CN101076305A (en) 2007-11-21
AU2005267539B2 (en) 2011-12-08
EP1765234A2 (en) 2007-03-28
CN101732125B (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CA2571871C (en) Flow regulating implants
KR100495373B1 (en) Flow regulating implant, method of manufacturing, and delivery device
JP6074011B2 (en) Fluid discharge and supply system
DE69633074D1 (en) INTRAOCULAR IMPLANT, INSERTION DEVICE AND IMPLANTATION PROCEDURE
KR100355472B1 (en) Intraocular implant, delivery device, and method of implantation
JP4195203B2 (en) Implant and delivery device and method for manufacturing fluid control device
US20130131577A1 (en) Uveoscleral drainage device
US20230285191A1 (en) Intraocular shunt implantation methods and devices
US10952897B1 (en) Eye implant devices and method and device for implanting such devices for treatment of glaucoma
EP4041148A1 (en) Glaucoma shunts and related methods of use
AU2011253724B2 (en) Flow regulating implants
RU2002108965A (en) Method of microdraining in the treatment of glaucoma (options)

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831