CA2033139A1 - Silver-metal oxide composite material and process for producing the same - Google Patents

Silver-metal oxide composite material and process for producing the same

Info

Publication number
CA2033139A1
CA2033139A1 CA002033139A CA2033139A CA2033139A1 CA 2033139 A1 CA2033139 A1 CA 2033139A1 CA 002033139 A CA002033139 A CA 002033139A CA 2033139 A CA2033139 A CA 2033139A CA 2033139 A1 CA2033139 A1 CA 2033139A1
Authority
CA
Canada
Prior art keywords
oxide
silver
powder
weight
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002033139A
Other languages
French (fr)
Inventor
Akira Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Akira Shibata
Sumico Management Planning Co., Ltd.
Chihara, Hirosuke
Sumitomo Metal Mining Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP224090A external-priority patent/JPH03207831A/en
Application filed by Akira Shibata, Sumico Management Planning Co., Ltd., Chihara, Hirosuke, Sumitomo Metal Mining Company Limited filed Critical Akira Shibata
Publication of CA2033139A1 publication Critical patent/CA2033139A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te

Abstract

ABSTRACT OF THE DISCLOSURE
Silver-metal oxide composite material and process for producing the same A silver-metal oxide composite material comprising a sil-ver matrix, (a) from 1 to 20 % by weight, in terms of elemental metal, of an oxide of at least one element selected from the group consisting of Sn, Cd, Zn and In and, optionally, (b) and oxide of Mg, Zr, etc. and/or (c) an oxide of Cd, Sb, etc.; the oxides being dispersed in the form of fine particles with a particle size of not more than about 0.1 µm uniformly and being bound to the silver matrix with no space left, and a process for producing the same. The composite material is excellent in physical and chemical strengths at high temperatures.
The process can produce the composite product even with thick walls, within a markedly short time in high produc-tivity. The composite material is useful as electrical contact materials and electrode materials for electric welding.

Description

2~33 ~

Silver-~e~al oxide aompoaite ma~erial ~d proc 3~8 for pro~u~ln~ th~ ~ame B~5RGRO~E~OF T~E IEV~N~ION

1. Field of khe In~ention ~ he pre~n~ invention rela~e.s to a ~l ver-m~ta ox~de ~omposlte mate~ial an~ proce~3 ~or p~odu cing th~
~ame, and ln partiaular ~o a ~ er-metal oxlc e compo~e ma~ial ~ui~.ed to eleatriaal con~al~t ma~e~ia~ ~ and elac-~ode ~rial~ for eleatric wel~in~g ~nd a p~ ae~ ~ox p~o~ucing i~..
. .Desc~ip~ion of Prior ~t Sil~sr-~eta} oxi~e compo~ite material~ ~r~a~d by adding a metal oxide ~uch a~ ~ tin oxida ~o S l~r ha~e maxkedly impro~ed st~eng~h and therefore are u ~e~ a~ an electrical contaat m~terial fo~ ~elay~, ~witc~ .e~, ~reaker~, and the like f~ alternatln~ cur~ent and ~ireot cu~xent, pa~ticularly ~uita~ly used a~ eleotr cal ~wlt~h-ing con~a~t ma~erial~ ~or me~ium load pu~po8e .
Silver-metal oxi~e compo~i~e ma~r~l have be~n heretofore prvduaed ~y ~he ~ethod~ i~ which ~ ~ Qr ~lloy con~ainlnq one or mo~e o~h~r met~ls to be oxi iz~d i~ ~n-t~rnally oxidi~ed, ox ~ ~ilver p~wde~ ~nd a p~ ~wde~ o~
oxide D~ o~her ~e~Als are ~lnt~red ~y power m~ Itall~
Accordin~ ~o ~he ~bov~ i~tern~l oxida :ion m~hod, a ~ilver-ot~.er ~etals sol~ solution Rlloy i~ h~ated ~el~w it~ melti~ point under an in~r~a3ed par~lal )~e~ur~ o~

' ' . ' . . .: .

2~33~3~3 oxygen 80 that oxygen may be dif~us~d into th~ alloy~
there~y the other ~etal~ which have a relative~ .y h~h a~-inity for oxygen heing pr~ipita~ed ~ fin~ p4r~icle~ of oxid~6 in a ~ilver ~atri~. This metho~t howev~r, has the di~advan~age~ ~hat the oxide con~en~ a~hieved ~n the aom-po~ite matarial produaed i~ lim~d to no~ mor~ ~an abou~
4~ by weight in terms element~l met~l, and tha~ the di~u-sion rate o o~ygen into ~he solid solution alioy i8 ~o 3.ow that production of th~ compo~ite m~teria} ~ ~e~d~ much ti~e. ~o increa~e the oxid~ ~ontent a~oYe abo It 4$ i~
term~ of ~le~en~al metal o~ to increa~e the di: Efu~ion ra~e of oxygen, an elem~nt aapable o~ promotlng oxi~ lation sU~h a~ In and ~i iB added prio~ to in~ernal ox~-da~ ion.
Neverth~le~6, internal oxidation of ~n allo~ ~ ~th a thiC~-ne~s o~, e.g., 2 ~m take~ about on~ mon~.
Moreov~r~ aacording to internal o~idat ion, the a~ount ~ ~x~gen diffu~ing in~o a ~o~l~ soluti on allo~
dec~ease~ in ad~ar~e p~oportlon to ~he 3qua~e ~ ~he thicknes~ of the lay~r ~rom ~he surface which has been al-ready ~xidized, 80 that it i~ ine~itable that oxl~ paxti~
eles clo~e to ~he ~ur~ace become coar~e, whe~f as a~ al}oy phase aontainin~ a small amount of ~ine ox~de par~icle~
forms in the core. Con~equently, the silver-n etal oxi~
compo~ite mate~ial produced i~ non-uniform in the distr~
ution o~ the oxide particle~ ~ w~ll a~ in ~h~ ~ize ~h~e-of. ~he par~i~le 8iZQ d~reasas wi~h the dep1 h. Since the ox~d~ ~article~ are non-u~form in ~ize al d ~egre~ate a~ ~escribed ~o~e, improvement in ~t~ength o the co~-po~i~e materi~l obtained ~ mited; hence fu2 ther ~m-pro~ement ha~ been require~.
In the produ~tion of a eilver-matal o: :i~e com-posite mate~ial aooording to powder tn~tallurg~ ~, a p~wd~r o~ an oxide o~ Sn~ Cd, ~n or the lik~3 wi~h ~o~ ~cl re:E~a~ory properties and ~ rer powder ~re ~lnterad a~ : a temper~
ture a~ whi~h silYe~ olid. q!h~ref~e, ~: .ong ~inding i~ not aahiev~d betw~en ~he silv~r pha~e and ~ :h~ ox~de ., 21~3~.39 particles; there remain~ f ine spa~es the~ebatwe en. Pur- :
ther defec~s existing in the ary~al ~truatur~ of ~he ~t~rtin~ oxide are no~ repaired. Cons~guently, the ~in~ered product obtaina~ ha~ a poor mechanical ~tr~ngth, partiaularly at a high temperature, whioh cann~ ,~ be im-pxo~ed ev~n by post-treatment ~ch ~ hot ex~n `~lon or ~orging. To improve ~h~ sil~er-metal oxide coJ Iposite material produced by powder metallurgy, the ad~ litio~ o~ W, Mo or the l~e th~t ~orm~ low~r oxides i~ atte3 Ipted, ~t ~ncrease~ ~ontact re~i~tan~e and make~ the ~ ~e~ulti~g composite matexial su~cepti~le to depo~ition w3 l~re the ma~erial i~ used as a~ electriaal contaa~ mate: ~ial. ~he addit~n of ~O, CaO, ZrO or the like for ~mpxl ~ve~t m~y ~e propo~ed, bu~ it impair~ ~intering prop~ ~ and therefore results in a lower.ing of t;he m~chan~ ~al st~gth o~ the sintered produc~s ob~ained.

~UM~ARY OF ~HE I~YENTXON

It ~ 8, accor~ingly, an ~b~e~:t o~ the p ~e~en~ ~n-ventivn ~o provide a sil~er-metal o~ide compos 1t~ rial in whi~h ~ine particle~ of a par~i~lar element are ~und ~o silve~ matrix ao~pactly or ~ith no 6pa~e le~t an~ di~-persed u~iformly in ~h~ ~ilver mat~ix, and a ~ roaes~
capable of producing such a co~posite material in a re~a-~i~ely short time w~th a hi~h produ~ivit~.
~ he present invento~ ha~ ~is~ove~ th lt tho oxygen ~iffu~ion ra~e in ~nternally oxidizing ~ silv~r-another met~ qy~tam aan be increa~ed b~ pla~n~ ~he ~ys-te~ in a condi~iRn where~n a li~uid pha~ and ~ ~olld ph~se coex~ nd that a ~ilver-mQ~al oxit~ c ompo~ite masexial can be obtained in whi~h oxid~ pa~tia le~ ~ormad are ~o~nd to ~ilv~r ma~rix cv~p~a~1~ or wl~h n o sp~a~ ~t ~nd di~rsed uni~oxmly in th~ silv~r m~rix.
_ilvex-met~l oxid~ com~o~ite ~akerial Thu~r the pre~ent ~nve;lti~n pXbvi~ a silvex-~3~ `~3~

me~al oxide aompo6ite material compr~in~ a 5i ~er ma~r`lxr ~a) ~rom 1 to ao % by weight, in ~erm~ o~ elem ntal metal, of an oxlde of at lea6t one ~lement ~electe~ f~ Oll ~IB
g~oup oon~isting of Sn, ~d, Zn and In and, optilonallyf ~b~
f rom O . O1 to 8 g6 by weight, in ~e~n~ o~ element al me~
o~ an oxlcle o~ at lea~t one elem~nt ~elected f l om the ~roup c:onsi~ting of ~5g, Zr, Ca, ~, I;~e~ C~, Mn and q~i and/or ~) fronl û.O1 to 8 96 by weigh~, in l~:en Ig of elemental me~ l, o~ an oxlda o at leas~ one e: .~ment 5 ~lected from the group con~i8tin~ o~ Sb, Bi a~ Id lron ily metals ~uch a~ Fe, Ni and l::O; ~-he oxitle o~ th~
elemQnt and, ~here p~es~n'c, 'che oxida of the ~' ~ olemen~
and/or the oxide o~ t~ ( c ) element being disp ~rsed in the ~orm o~ ~ine partlcle~ with ~ partlc~e ~lze of no~ ~o~q, than about O.l ,um uni~ormly ~h:~oughout the ~il ~ar matrix ~rom th0 surface to th~ c~o~ ther~so4 ~nd being bound to the ~ilver ma~rix with no ~pace le.t be~een ~ he oxide~
and ~he ~ilver m~trix.
I~ th~ colnposi~e n~aterial ~ h~ pr~se nt inven~-~ion, th~ oxide particle~ di~p~3r~d in the ~at rix no~mally have a hard an~ den~e cry~tal ~truat ur~.
In the ~ilver-me1~al oxi~e oompo~ite ma t~rial o~
the p~esent invention, ur~like the prior a:ct cc mpo~ite ma~erial~ pxocluae~ by internal ox1da~ , the oxids~ are di per~ed in the f o~m o~ f ine pa~ti~les wlth p~ cla ~i2a o~ n~t ~nor~ than abou~ 0.1 ,~ ~iformly t hroughc~
~he OEilver m~trix ~rom the ~u~fa~s to ~he ~:or th~20 . ~n~
are boun~ to ~he ~ilv~r matrix compactly or ~ th na ~pa~e le~t, th~re~re th~ compo~lta ma~3rial i8 13~;C llent i~
phy~iQal and chemic:al ~ eng~h~, particul~rly at h:i.gh ~emper~ture~. ~lthouyh accor~ln~ tc~ the inte ~al: oxida-tion, up to on}~y a~out ~ Q~ by ~eight, in ~e~mC , of elem~n-t~l me~al, of oxid~ can be in~orporat~ad in ~h~ ~ compo~ite3 ~naterial, the compo~i~e mati3rial o~ the pre~l ~ in~nt:~on can cont~in slmost unlimitsd alnoun~ o'Et ~ut ~ ~ac~cal~:~r up to S0 9~ 3~y weighlk, pIefera~ly up ~o 3~ ~ ~ wti~ht o~

' . ' ~ ' ' :
~, 2~3~ `~ 3~

oxi~e~ in terrns of elementa:~ me~al I re~ultiFlg i n ~llrl:h~
improvement in ~t~eng~h. ~ .
~oreover, ~he conven~iona~ inte~nal ox: .d~tion r~- ~
quire~ mu~h ~m~3 ~or completion of oxida~ivn, ~ ,nd particu- :
larly c~n produce thLck q~all compo~lte p;roduat~ ~ wit}~ dif-~i culty; ho~eve~, the proce~s o~ the pre~ent iI Iv~ tion de-~cribed latRr, by contra~ C~ll produce ~he a~ )ve c:~m-po6~t~ produc~ e~ren wi~h ~hic3c walls or in ~ llX bloa~c t wi~hin a markedly ho~ time in hi~h produativ. L~y.

sRIEF ~ESCRIPT~ON oP l~RAWI~GS

Fi~. 1 6hows a ~emperature ~r8. p~essur pha~e dia5~rarn o~ ~ilver~o~ygen sy~em.

Where the compo~ite material, of the pr e~aen~ n~er~"
tion aontains th~a c xide c~ said ~ lemen~ ~ d/or the ~lement of ~aicl ( c ) eletnent in addie:lon to ~he ox~de c~
the (a~ ele~3n~, ~h~se oxide~ normally exl~t i Jl the fci~m o~ a compound oxid~ ~ OI~ a ~:ombined ox;i de ) .
The compo8i~e ma~erial o~ thB pre~en~ inv~n~io~
l~as good ~treng~h at high temperature~, ~d i~ use~ul a~
an eleat~ al aontaat ma~3rial for relay~, ~ .~che~, breaker~, and ~he like ~o~ alt~na~ing cu~rent . and dir~ac:~ :
curren~. In l?articula~, ~he aompo~ite mat~ ~1 con~a~ning the oxide o~ he ~ ~ ) elemant, which enhanc~s 1 he re~rac-to:ry properties o~ the oompo~i~e ma~ri~l, is sui~bl~
an electrod~ materl~l ~or ~lectri~ weldin~, ~ r ins~a~c~
The metalfi of the ( c ~ el~ment 8~ ;0 promo oxida~ on o~ ~he elem~3n~ to b~ oxidiz0d in the pro~eas of p~l~c-tion a~ de~arib~d l~e~, arl~ ~orm a s:~omb~i~ned xide ~o~h-er with ~he (a) el~marlt and, whe~e pre~n~, t e (~1 elQ
m~nt, ~hus stab~ ln~ ~feativ~ly ~ontaat ra is~a~lc~ i~
low current ~egions.

~ ~ ' 2~ c~

The compo~ite material, as descr4bed a~ )ovs~ may con~ain up to sn ~ ~y we4ght, pr~srnbly up to 3~ ~ by weight, of the oxi~e in total. ~oo l~rge an ~ nount o~ the ~ide~ may impair electrical con~cti~ity of ~ le mate~a7.
The compo~i~e material of the p~e~ent nv~n~ion include~ a va~iety o~ ~bodiments. In any of the e~bodl-~ent~, the ox~de of ~he (a) elament and, optio lally, khe oxide of ~aid ~bl element and/or the oxide ~f 3aid (c~
~lement axe ~i~pexsed in ~ er m~tri~ uni~orm ~y i~ th~
~ta~.e as descri~e~ above.
In the ~irst e~bodi~ent o the co~po8i ~e material, the ~ompo6ite material e~entlally con~i~t~ of the ~llver mat~ix and from 1 to ~0 % by weight, in terms o~ elemental metal, o~ an ox~de at th~ (a) ~lement.
In the second em~odiment o the ~nmpa~ ite mat~rialr the ~ompo~ite ma~e~ial es~entially c on~l~t~ o~
silve~ ma~rix, ~) from 1 ~o ~0 ~6 by~ waight, i n ~erms o~
~lem~ntal metal, o an oxlde o~ at lea~t one ~ ~ nt selec~ed ~rom ~he group aonsi~ting o Sn~ Cd~ ~n an~
and ~b) ~ron~ 0.01 to 8 ~ by weight, in ~erm3 ~ ~f ~lemen~al ~ne~al, of an oxids of at lea~t one elemen~ se: .ec~ed rom the ~ up cor~ ing o ~g, ~, Ca, A1, CQ, C~ ~ and Ti, wherei~ th~a oxides of ( a ~ and ~ b ) f orm a com~ ~und oxide .
Il~ the third e~nbodiment o~ the CO~pO8, ~ te m~ter~al ~h~3 composite ma~erial e~sentially con~ s o ~ ar n~atrix~ ~a) ~r~:m 1 tC~ 20 90 by welight, in tenn ~
elemell~al metal; of an oxi~e of at lea~t on6~ ~lement sele~:tæ~ ~rom the 5Iroup con~i~ting o Sn, Cd~ ~rl and In, and ~c) from 0.01 to 8 9~ by weight, in te~ns ~f elem~ al metal, o~ an ~x~de of at lea~t ~sLe element 8e L~tedl ~rom the gro~p ~onsi~ing of ~, Bi and iron fami~ y me~
wh~rein the oxide~ o$ (a) a~d (~ ~orm a Qomp ~nd ox~de.
In the ~ourth ~mbodim~ f ~he ~ompc ~i~e mat~rial, the composi~ ma~erial e~sen~lally con~ o~
8ilv~r m~trlx, ~a) from 1 t.o ~0 % by w~i~h~ i~ t~x~ of elemental metalr~a~ an oxlde o~ ~t ~ea~t one element 2 ~ 3 -~

~elected from ~he group con~$~tin~ of 8n, Cd, I Z~ and In, (b) fronl 0.01 to 8 g~ }~y weis~ht, in ~e~m~ of el ~mental met-al, o~ an oxide e a~ l~a~t one element selec!t 3d frc)m ~he y~oup aon~is~ing o Mg, Zr, Ca, Al, ~e, Cr, Mn and Ti, and rom 0.0~ to 8 Y6 by ~eight, in te~ms of el ~mental me~
al, o~ an oxide of at le~t one elemerl~ cslect ~d fI~m ~he ~roup con~isting of ~1~, B~ ~nd i~on f~mily met als, ~he~in the oxicles of th~ (a), (~) snd (c) elelnents fc nn a c~om-pound oxide.
In the ~e~ond to f ourth ~bod im~nts a's ove ~ the compound oxide ~o~ned i8 ~isper~e~ ln 'ch~ for~ ~ e particles with a paxticle diameter o~ nc~t mor~ ! tha~ al~ollt 0.1 ,um unifo~nly 1:hroughou~ th~ silver ma~rix from ~he ~urf ace to ~he co:c~e ~hereo~ and i~ ~ound to t~ ~e silver matrix compa~tly or wi~h no ~paco le~f~ ~etweel ~ the par1;i-~l~s and the matrix~
Process fo~ ProduaLnq ~Llve~ ~Le~al ~ e ~x.ide Acco~Lng to ~he proce~s e the pr~3~e; It in~entiorl, a ~taxti~ materlal contalning ~ilvl3~ and 1:h~3 ~a) ele~ient and, op~ onally, the ~) el~ment and/or the ~ ) element i~
placed ln a ~tate ln which a liquid phase and a ~olid pha~e caexi~t. ~n ~uch a ~tate a part o the ~t~m is pre3ent in ~ liquid pha~e, which sorve~ ~8 of a g~od pa3-~aS~e through whiah oxygen i~ aon~reye~. ~here o~e, marked-1~ rapid diffu~ion o oxyg~n i~ ach~v~d as c ~pared ~th khe aonventional i~ternal oxidation, ~o that ~xida~lon pro-::ee~s within a relatively short ti.m~ unlfc rnlly ~r~m th~
~ur~ace ~o ~he core pa~t:s.
~ h~s, the silver-me~al o~ide cc~ it e matori~l o~
~h~ present lnvention can be produ~ y a pl o~e~ co~-pris~ns~ the st~pæ o:
(A~ rais$ng ~he partial pr~sure of c xygen a~
hea~iny ~herein a mixture co~p~ ing ~ er r ( a ~ ~rom .1 ta 20~6 by weight, in te~ns ~f el6amental metal, c ~ a~ le~t one element ~ele~ed ~rom the group ~onsi~ .~ o~ ~n~ Cd, Zn and In in a metalli~ al~d/or oxicle ~te al ~d, c~p~cion~l-III.~1~.I.._I
2 ~ ~ 6~ ~ 3 ~,~

~-ly, (b) from 0.01 to 8 ~ by weight, in ~erms o: . el~en*al ~etal, of at lea~t one elemen~ ~el~cted $r~m ~ le group aon~i~tin~ of Mg, Zr, Ca, Al, ~e, Cr, ~n an~ T L in a me~allio and/or oxid~ ~tate and~or ~ rom Q. ~1 ~o 8 % by weight, in t~m~ of el~m~nt~l metal, o~ ~t lea 3t on~ ela-~en~ ~electe~ fr~m ~he ~roup con~lstin~ of ~b~ ~i and ~ro~
famil~ me~al~ ~ch a~ ~e, Ni ~nd ~o Ln a metal lic andJo~
oxide sta~e to there~y ~ri~ the m~xture into ~ st te wh~re a soli~ pha~e and a lig~id phase aoexi~t , w~e~y the (a) elem~nt in a metallic ~tate, and the ~) elemen~
and/or th~ (c) element in a metallic state, w~ ere pras-~n~, are precipita~ed as oxide~, an~
(B) lowe~ing th~ pA~tial p~es8u~e of xyge~ and coolin~ the mLxt~re.
The m~xture u~d a~ ~ start:lng materi 1 ln t~e s~p ~A) may be in the ~orm of, ~or. Qxample, n alloy or a ~intered pr~duct produced by powder metallu~ 0~ v~r ~id ~a~ elamen~ And, optionally "~aid (~) Rl~ ~en~ ~nd~or said (~) element which ~re added al~ necoB~A~y The el~-m~nt o~ ~aid (~) has a high a~$ni'ty ~o~ oxyg n and e~ec~
~vQly allow~ ~ine oxide par~icle~ to ~e prec pitated, ther~y ~e~ing to improve the xa~ractory pro erties of ~he ~omposite ~aterial. Although a starting ~ ~ixtUx2 con~
~ining ~he (a) elemen~ in a rel~tively ~mall ~moun~ ~t cont~inlng the (b) ~lement in a relativ~ly la ge a~oun~ i~
gen~rall~ di~fiaul~ to oxidi~e, the process o ~he prQs~n~
invention can readlly proceQd with ox~da~ion f suoh a ~tar~in~ ~a~erial, producing a compo~it~ e ial ha~ng good re~r~atory p~oper~ sui~d to elec~od ma~ex~al8 ~o~ electxic weldi~g~ The (a) al~ma~t ~8 e~ ct~v~
promo~ing oxidation.
The ~intered produ~t whi~h may ~e use as th~3 s~arting mix~u~e includes, for exflmplot a ~in ~r~ad p~adu~
produc~d from a ~ilver pow~e~ asld ~ powder o~ ~llo~ of ~ilver, the (a3 el~ment and, optionally, th~ (b) el~me~
anà~or ~he ( ~ ) el~nent .

2~3~
g The ~intered produc: t ~hich may ~e u~ed as the start~ mixture ~18c) inclllde~ a ~intered prod l~t produced from ~ ~ilver powder and a powder of alloy o~ h6~ Q
ment ancl, the (b) element and/or the (c) eleme nt.
Prefarably, in praaticing the above pr ol;:es~ t 'cha mixture ~hiah is an alloy or a ~inter~d prodll ~ i~ cove~d wi-th ~ilver o~ ~ ~ilver-~ased alloy ~ont~ining other ~net~l.
component~ ~han ~ilvex in a ~mall ~moun~ of 1~ 88 ~han 1~
hy weighk. This i~ becau~e when a high pa~tic 1 p~e~sltxe of oxygen i~ applied ~o a sllv~r ~ix~ure cont~ ~n~ng S to 4.
20~6 by weight ef the (a) el~mentr an oxide ~uc h ~8, e.~., SnO2 Inay accumulat6! in the ~u~face lay~r, the~ el:~ lntex-f ering with permeation ox penetration of oxyg~ !n into th~
inside o~ ~he Inix~ure- To pr~avent ~uch lnte~ er~nG~, it i~ reguixed to lncrea~e oxygen parti.al pree~u~ 0 ~x~dually up to a desired vallle, whic~h re~u1ts~ in nece~ ity O~ long time fo~ oxida~ion trea~ment. Howe~,~r, if thl ! mi~tur~ i~
covered as descri~e~ above in ad~nc:e, the ac umula~i~n of the oxl~ in ~he surface laye~ aan be prevent~ ~ and therefore trea~ment can be ~tart~d ~ith a d~ ~ed ox~en parti~l pre~sure ~xo~ the be~inning. ~his i8 advantageou8 in comple~ing oxi~ation wi~hin a short ~ime.
In the procefis, use of a ~il~er mixt~ ^e ~s~ential-ly ~on~ in~ of ~rom 1 to 20~ ~y weight of t ~ ~a) Rl~-ment an~, as the ~estr ~ilv*r, ~or t~e ~tarti lg mixtur~
qi~e~ the co~po~ite ~a~erial of a~id i~t o~ ~o~im~n~.
In the proce~s, use of a ~lve~ ~xtu CA es~e~t~al~
ly con8i8ti~g ~f ~rom 1 to 20~ by w~igh$ of t ~ ~a) ele-ment, ~om 0.01 to 8~ by wei~ht o~ the (b~ ~1 ~ment and, the ~tr 6ilvex, for the ~t~r~ing m~xture gi ~e~ ~he ~om-posite material of ~aid ~econd em~odiment. I the s~a~m i8 p~aced in ~he ~vnd~tion wh~rein a liquid ~ h~e an~ a ~olid phase coexist un~il the whol~ of the me tal~ o~ (a) and ~b) pre~ipitate a~ ~h~ oxi~e~ ~ith kh~ p~ ogre~s o~
oxi~at~on. , In the process, u~e e~ a silver mixtu re eæ~en~ial-~F~ 33 ly con~i~ting o~ from 1 to 20g by w~ight of th~ I (a) ele-men~, ~rom 0.01 to 8~ ~y weigh~ of the (c3 ele~en~ ~n~
the re~ ilver, ~or ~he ~artin~ ~ixture giv ~ tha ct~m-po~;ite matexial o said thlrd embodlment. If he sys~em i~ plac~d in the condition wherein a liquid ph se and a-~olid phase coexist until th~ whole o~ the ~net 18 o~ a) and ~ c~ ) preGipitate a~ ~.he oxides wi ~h the p~o re~s oxida~ion .
Fux~her, in the ~?I`OÇe~i8t u~e of a ~ilv r m~ G
es~entially con~isting o~ ~rom 1 o ~O~ y w~i ht o~ ~h~ ~.
~) elelnent, from û.Ol to 8% by ~eight o~ ~he (~) ~lem~nt, ~rom 0.01 ta 8% by weight o~ ~he (c) ele~nen~ ~ nd, as t;he xest, silve Eo;~ the ~tarting ~ixtu~e gives t he co~po~'ce mat~rial o~ ~aid ~r~h embodiment. If ~he ~ ~t~ L~
placed in th~ ~ondition wh~rein a l~quid phas and a ~lid phase co~ist until tho whole of the metal~ o (a)~
~n~ ~) preciplta~e a~ the oxides with the pr gX~8~ 0 o~idation.
In the process o~ the present inventi n, a ~art wh~le o~ each ~f th~ (a) element and, optiona ly, the ~b) element and~or ~he Ic) ~lament con~a~ned in t o sta~ing mixture us~d ln the step (A~ ~ay ~ p~eYsn~ ~ a pa~t.i~le of an oxi~e ha~ing a parti~le ~ize of not morl ~ than ~ou~ -0.~ ~m. .................................................... ~`
Accoxdingly, the p~OC9~ of ~hq pre~: ~t in~ent~ an includes, as a ~urther embo~iment, one in wh~ ~h ~a~d tarting mixture u~ed in the ~tep (A) i~ a ~i ~ter~d pro-duat produ~ed ~xo~ a ~ilver powd~r, a powd~r ~f an oXi~e of ~he (a) elemen~ having a p~rtiGle ~ize of ~o~ ~or~.than ~bout 0.1 ~m ~nd, opti~n~llyt ~ powder of an ~xide o~ tha (~) ele~ent having a particle ~iz~ of not mor a than a~o~t 0.1 ~m and/o~ a ~owdex of an oxide o ~he (c) ~l~m~t hAv-in~ a par~cle ~i~e ~f nat mo~e than about 0~ 1 ~m.
In the ~as~ ~f thi& embodim~, th~ c xide o~ the (a) ele~n~ and, op~ionally, ~he oxides o~ ~h e (b) el~en~
and/o~ t~e t a ) ,element to b~ di~p~rse~ in the 3ilve~

~33:~3~

matrix are prov$ded p~eviou~ly in ~he ~orm o~ c ~ide po~_ ;
ders having a partlcle ~i~e of no~ more than a~ ~o~t 0.1 ~m.
If the ~intere~ produ~ pl~aed in tho condit tion in which a part o~ ~he ~y~tem become a liq~id pha~e, ~ne spa~es which may be pre~ent amon~ o~ around ~h~ ~il~er par~icles ~nd the oxide part.iales are ~illed wi .th the li~-uid pha6e, and a den~e or aomp~t ~ru~ure wi~ :h no spa~e l~t i~ ~hereby achieved. Con~eguently, the æl :re~gth o~
the compo~ite ma~er~al obtained i~ i~pr~ved.
In the embodiment o~ the pr9ce6B t ~Be ~ ~ a ~intered pro~uct produG~d from ~ ~ilver p~w~er an~ irom 1 to 20~ by weight, in ter~s 0~ el~mental me~al, ~ a pow~e~
o$ the an oxide of the (a) element, as ~aid 6i nte~ed pro-du~ give~ the ~ompo~ite material of ~a~d irs t embodi-me~.
In thq em~odimen~ o~ the proces~, u~e of a sinte~d product produced ~rom a ~.Llver p~deI , ~ro~ l`to ~0% by weigh~, in te~ of elemental ~etal, o~ a powd~ o~
th~ (a) element and ~ro~ ~.01 to 8!~ by weight, in ~rm8 o~
~lemental met~l, of a powder of the o~ide o~ t he (b) men~, a~ sai~ si~er~ prod~c~ giv~ the comp~ l~t~
m~ter~al of said ~econd embod~ment.
In ~he ~mbodimQnt of ~he ~roc~s, u~e o~ a ~inte~ed produo~ produced fr~ a ~ilver powde~ ~f f~om l to ~0~ by weiyht, ~n ~ms of elemental me~al, o a powd~r.of the (a) element and fro~ 0.01 to 8~ ~y wei~ht in term~ o~
~lemental metal, of a po~der of th~ oxide o~ ;he (a) ele-ment, as said sin~ered p~oduct ~ives ~he comp ~lt9 ma~e~ial o~ said ~hl~d em~odimen~.
In the e~b~dimen~ of th~ proce8~, use o a sint~red ~oduc~ p~oduc~d ~om a silver p~WdQ ~, f~om l ~o 20% by w~igh~, in term~ o~ elemen~al ~e~al, o a ~owd~r the (a) ~lement, from 0.~1 to 8% ~y wei~ht, i 1 t~rms of elem~ntal ~etal, of a powder of the oxld~ of ~ho (b~ ~le~
ment, and fro~ Q~01 ~o B~ ~y wei~h~, in term~ ~ e~ntal m~al, o a powder o~ ~he oxide o~ th~ (~) el me~

2~3~3~

said ~intered pr :3duct gi~es the aompo~i~ca mate ial o s~id ~ourth snlbodi~nen~
Fig. 1 ~how~ the tempera~ure ~8. pre~5 re pha~
di~ram of the sil~rer-oxygen ~3ystem. In tha c ase whexQ
-the ~3tartin~ mix~cure of the proce~ of the pr~ sent inv~
~ion contains the (al el~nen~ and, opSionallyr I:ha ~b) element and/or the (c) elemen~ in a m~allia ~ ~-a~e, t;hQ
phase diagram will be changed ~o some ex~ent. }loweve~, the ph~e dia~ f Fi~ helpf ul ~or unc e~3~sandin~
the proce~ o~ the present inventlon. Wh~n ~i .e ~t~r~ng mixtur~s i5 placed in ~ state in whis:h a liqu~c , ph~ nd E~
~alid pha~e aoexiet (~he region indlcated a~ c ~ ~ h in E'i~.
1, per~eation ~r pene~xa~lon of oxy~en into tl le Gy~ An ~ake place with ea~e by ~he externa,l oxy~en p: .~ure, be-cau~e Qilver i~ paxtly in the fo~tn of a li~ul~ I ~ha~e. ~!he ~ u~lon rate of the oxy~en i9 ma~kedly l~rg~ ~ ompared with the ca~e wher~ oxy~en difuse~ ~nto a ~o ld 801u~0n in ~ha eonven~ional internal oxld~tion. A~ o ~g~n i8 con~
~eyed throu~h the liguid pha~, the (~) eleme ltt ~h~ ~b) ele~en~ andJor ~he (~ ar~ element oxidi~d, ~here p~es~
ln the o~m o~ ele~ental m~al. ~h~ oxldati~ ~ pr~ee~s from th~ ~ur~ce o~ the ~ystem. For Qx~mpl~l where t~n i~
pre~ont, from the l~que~led sil~er~ oluti ~n, t~n i8 oxidi~ed to pr~cip~tate as ~ine ~in oxide (S~ ~2~ Par~ e~
with ~he progre~ o~ oxida~ion, wlth a p~r~ s l~er pha80 b~ing le~t. P~e~umably, such reaction pr~cee ~s ~ucco~
~vely from the ~ur~a~e ~owa~d the aor~r an~ $nall~ pro-~uce ~ ~tate wherein t~e f in~ tl~ oxide part ~le~ a~e~
pers~d unlformly throughout th~ tem.
Since th~ te~pera~ure v~. p~e~ur~ E~ a8~ di~rzm is dif~rent depending on ~he p~esen~e or abi e~ae of .~h~
(a) ele~ent r the (b) elemen~ and~or the ~a) ~ lement a~
well a~ ~heir con~en~s, ~he temp~ratu~e ~nd t he partial pr~3s6ure of o~ n wheI~ a liquid pha~3 appe~ r~ ~nnot ~e generally speai~ied. ~oweve~, ~t i8 ea#y fol tho~
~killed ln the art to f lnd Ruch t~mpera~ur13 ~ l~d pr~s50 $ ~

for any sys~em, ~ecau~e if temperatu~e and pre. ;sure ar2 raised ~vr any s~arting mixture, the ~y~em ~r~ Ll t~an~r fr~m a ~ate where only a eolid phase exi~s t ~ a ~t~te where a eoli~ phase and a liquid pha~e coexist . If sven a par~ of the ~y6tem i8 li~ueied, ~he di~fu~ion ra~e of oxygen markedly incr~ase~. Hence, a~ long a6 l~uid pha~e exir~t8, a relatively low pre~sure and lc r tomper~
tuxe are suf~cien~ and such relatively ~11~ ondi~i~n~
are ad~antag~ou~ with ~e~peat to con~mption q en~r~y.
Although the 301id and liquid pha8es coexi~ i a wide.
re~ion on a phase di~gram (e~pecially, the~e ~ no uppe~
limi~ation on oxy~en par~ial prassure for a c r~ain temperat~re r~ng~), it i~ practlcal to carry ut ~he p~o-ce6e of ~he pre~en~ $~vention by finqing a ~t te wher~. the both phaee~ coexi~t in a tB~perature range o~ rom 3gO~~
to 830~ and in an oxyg~n partial pre~ure ~a ge of ~om 100 ~o 450 atm, There i~ no limitation on ~he method or l~xinglng the s~a~tinS~ Inlxture ~ he ~ta~e o~ t;a~ltt t ~npe;~a~
and pres~ re. Yor example, it ma~r b~ car~le ¦ out by ~r~t adju~ing ~elnpera~ure to a ~ca~et valu~a and ~ en.c~ntroll-in~ oxygen parti~l pXeB ure to a target ~alu ~ whexeby ths ~ystem i~ ~ran~erred fr~m the c~ r~gion to ~ ~ cy~ I L .
re~ton. Alternatively, it may be carrie~ ou ~ t rai~ing oxygen partial pre~su~e to ~ tar~t ~lue arld then rai~ing t~mp~xature up to a target value the~ the. sy~-~em i~ ~ran~erre~ ~ro~ he ~ 1 ~2 ~egio~ t o th~
r~gion .

~X~MPLES

The pre~;~nt inventiall will naw ~e de~ ~ ed s~
detail with re~erence t~ ~orlc~nsr e~ample~ ~nc co~npara~iv~
example~ .
,., ~est speaimen oE each Exam~le ~a6 pre !pare~ by ~ny 2~ l3~
~14-o ~he $ollowin~ method~. ~rhe c:ompo~ition and the ps~pa-ratiQn method of th~ te~t ~pecimen for each E~ lr~ple i~
given on Table l. Met:hod As A ~ilver alloy cont~ining a p~eclet 3rmin~3d amount o~ other m~3tals, baakod w~ ~h a pur~.
6ilver layer ~ith lflO ~hickne~ ~aA ~olled in~o a she~t 1 smn ~hiclc by the cc n~r~n~.onal hot rolling method, followed by c ~tting out to produce a di~a measuring 4.5 ~ m in diameter and 1 man in ~lckne~. ~h~ d?~c ~s pl~t~d with silver in a Shicknes of 3 ,u~n on it~ whole ~u:~ace~ by ~he barrel ~ilv6tx pl~
ing me~ ~od to prepar~ ~ test ~po imen. Method Bs ~hs melt o~ a ~lver allc~ ~onta ing o~
metals in a pred~term'LnQd amount , wa~ ca~t in a hol6~ with a dian~ er o~ 4.5. n~ an~ a depth of 1.0 ~un provided on a c~ ~on plat;e mold, ollowed by c:oo.ling with a me~alli~.
nold, ~o p:~oduc~ a di~a mea~urin 4.3 ~
d~met~r and 1 nu~ in ~hiQkness. The di~c:w~s plated with sil~ a ~hickne~ of 3 ,um on its whole l3ur$aces ~ the ~arrel ~llve:~ plat-ing m~thod ~o p~ap~r~ a te~t ~pe ime~., ~ethod C: ~he melt of a ~ilvia~ alloy contz~ ning ~ hi~h proportion o~ tin wa~ ato~ize~ ~ tc~ nitro`gen g~ ~o f ~ po~ r o$ the allc y . The ~live~-~in ~11QY po~d~3r o}~taine ¦ ~a~ ~ixq~l with a ~ilver powde~ at a pred~at ~min~3cl pro-portion, followed by grinding wi th ~ vibra~
tion mill. ~he rq~ulting ~ixed o~dor ~8 molded under pr~ur~ Q~ 1 ~-on t D ~orm a. ~iac:
~nea~urinç~ 4.5 ~nm in diamet~r an 1.1 Tmn i~
~hiakn~6~3. The ~re~n compact ol; tain~d wa~
preli~ninarily ~inter~d ~y holdi g i~ ~ 7S0~C
~vr 1 hour ~ n a nitrog~an at~o~p~ ~re, ~oll~
b~,r r~moldin5~ ~o produ~e a ~ pe~im~n ~3~:~3!~

meaæuring 4.5 mm in dlametex and : ..~ m~ in thickne~s.
- Me~hod D: ~h~ melt o~ an interm~tallic sompl ~nd can- :
taining a hi~h proportion of tin l ~8 atomi~d in-to nitrogen gas to form a po~e c. ~he pow- r der obtained wa~ mixed with a 8il ver powd~
~o a~ to aontaln prsde~ermined ~n ~un~ o~.tin and th~ other metals, follow2d b~ g~clndin~
with a ~i~r~tion mill. ~he re~u~ ting mixed powdex w~s molded, preli~i~arily ~ntsred. a~
~h~n remolded in the 8ame man~er a~ de~rl~ed ~or Metho~ ~ to pxodu~e a test ~E eci~n.
- Methad Es A 3ilver powder, a tin oxlde po~ .er and, l nece~axy, on~ or more powder~ o oxLdeR ~f a~her me~al~ were m~xed ~o as t~ aont~in eaah of the co~ponent~ in a predete~m ned *moun~
in ~erm8 0~ elemental ~etal, ~ol owed by grindiny with a vlbra~ n mill. T~s ~e~ult-in~ m~xed powde~ w~ n~ol~ed/ pso risionall~
~inte~ed and ~hen remolded in th ~ same ~annex ~s ~e~cxib~d $or ~ethod C to p~o luce a t~8 sp~ci~en.
Th~ te~t specim~ns of E~mple~ 1 to 1 were pl~ced in a heat-resi~n~ ve~sel made o~ heat-re~i~ ~n~ B~in les~ steel, whi~h w~ ~hen hermetically ~eal~ i. The t~8~
~pe~iman6 wer~ hea~d up to ~10C ~n an ox~gs n ~tre~mj ~nd then oxy~en par~ial pre~ure W~8 rai~ed gradu ally ~o 414 atm., a~ ~hich th~ test ~pe~im~n~ were ~ainta ~ed ~o~
hours. S~bs~quen~ly, the test sp~ci~n~ were mainta~;n~
a~ ~OO~c ~nd ~00 ~tm. ~or 10 mi~ut~ Therea ~terr p~a~-sure wa~ reduaed and aooling wa~ g~adually ac nduc~ed.:
The test sp~c:i~nena ~h~ trea~e~ w~re ~llt 2m~ O~-serv~3d to ~nd tha~ ~h~ oxid~3 particle~ form~ d we~a diS-per~ed uniEorm~y throu5~hout ~he ~pe~imen~ wlt h r~e~ sp~ce ~etween them and the ~natrix.
r~

~3 ~ 39 -16- . .

~ he ~e~t ~pecimens of Exampl~s 13 and 4 ~ere prepared by ~ethod A above. The ~omposition~ ~f ~he ~t specime~ ~re gi~en in ~a~le 1. The~e test sp~Gimen~ w~re ~aintained at 700C and ~n oxygen partial p~e~rQ of ~0 a~. for ~ hour8. Subaequently, the pres~ure ~a~ rai~sd ~o 3S0 at~. and main~ined at this pXe8~8 ~0 r 10 minu~es, ~nd ~hen reduc~d to 1 ~tm., followed by ~oc:ling.
~}~
Test ~peci~ens or ~omparati~e ~xample ~ 1 a~ 2 prapared in the 6i~me manne~ ~6 in Exi~mpl~s 13 and 14, ~e~pe~tivel~, were maintained under th~ ~ondit ion~ o~
700C and an o~g~n partial preRsure o 30 a~ ,, ~or 5 ho~rs. ~he oxidation Wa8 reaogniz~d to s~op e ~ a depth no~ more than 1 ~m ~rom the ~u~fac~. The~e~o ~ it was consider~d ~hiat aomplete oxidation :Ls i~o~8il ~le.

~ he test apeai~ens treated 'a~ dos~ribl ~d a~e.~n the above Examp~e~ 1 - 14 were mea~ured for hi lrdne~ nd eleatrical àonduativ1ty. ~he re~ul~ ar~ glv~ ~n ln ~a~le 1.
Fu~her, each o~ ~he test ~p~im~n~ 0 Exa~pl~ 1 - 14 ~a~ h~azed ~o a aontac~-~upport ally u~i ~g ~ r~.
sol~r w~th ~ compo~ n o~ A~-15~ In-13~ Sn ~y WQ~ht) ~r cond~at1ng th~ ~ollowin~ electrical ~est~
1~ Switchlna t~
~ w~ching ~es~ wa~ condua~ed under th a conditlons of o~rerload u~ing ~n ASq~ t~ster. Na~el~, th e t~
conducted unde~ 'ch~ aondi~lons o~ ~n alte~nat in~ ~rol~
o~ 200 V, a aurr~nt c~ ~0 ~, ~ power ~ator c ~ 0.2~
~ikchin~ frequency of 60/~in. r a contac~ lo~ d of ~00 g~.~s~tt a breakin~ ~oraa of 6~0 ~f. and nu~ er o~ ~witah-ing of 30,~00, pro~ided that when abno~al w~ ~ta~ O~
~po~ition was r~c~gnized, th~ t~ wa~ 8~0p~ ed. ~h~
was~d ~moun~ of ~h~ test ~peci~en u e~ a~ a c~nt~t ~.
mea~ur~d, an~ ~he ~tate of th~ ~u~fac~ o~ th~ tes~ed sp~a~men wa~ ob~e~ved vi~uall~.

-2 ~ 9 Z) ~
The maximu~n value of aur:rent a~ which the ~ont-~ct is re~i~ta~t to ~po~itior~ was ~ea~urod by prc ~ucin~ cur- !
rent~ using discharge o~ a chargeable conden~ r. ~he ~aX
value of current di~chaT~ged ~y ~he aonden~e~ ~ ao ina~ 6ed sucaessi~ely, by 500 A at a t~ne . Depc)qition wa~ con~;Ld~
ered ~o had taken plaoe when the ~ntaat pres~ ure exc~3ed~
~00 gf ~ /set, ansl the ~orce ne~e~sarSr for }~rea~ ing the con tact exceeded 1500 gf.
The result~: are gi ven in Table 2 .

2~ 3~3~ :

~able 1 Pr~pa;~:a - A~no~sts o$ rA~al~ ~lard- 1 ~Ondua~* 2 t~ on other ~han il~er, n~ ti~ y Exa~ple6 ~net}lod ~ k~ weight }I . ~ . Y ~ . A~ C . ~6 _ _ :
P. Sn ~i 9 8 71`
2 A Sn 10 104 6 3 B Sn 7.~ a ~ D~ 66 ~i ~ Sn ~, ~g 1 9~ 71.
C Sn 13 ~ Cr 0 . l 10' , ~5 6 C Sn 8, M~ 1.0 10! j 72 7 D Sn 7.5, Ca ~.5 lOl ~ 71 8 P Sn8~ Mg 1 9l i ~B
9 E Sn8 ~ Zs 1 9' ~ 7 E Sn8 ~ Cd 4 9 69 n~, In 4 ~1 ID~l 9 12 ~ C~14~ Sll 1.5 ~n 0.110 l 61 13 A ~n9~ Zr 0.3 ~i 0.1 g 3 6 l~ ~ Sn9/ Cd 3 ~g Q.15l~ 3 6~.
..
R~marks: *1 ~rdn~ of Ro~ ll ~2 In~national Coppe~ Stan~ard 2~33:~39 ~able 2 ~ _ _ W~fitedDeposit~on SU:cf ~e 6tat~
~mount te~t o~ cc ntac~a (my ) (A) ~ _ Exampl6~ 14 . 8~, 000 S~ooth 25 . 61~,000 Smooth 37 . 213, 500 sli~hti~ ~ i~rog-ala-^
48 . 814, 000 81ightl ~ i rr~ular 5~ . 218, 000 LR88 Si VRrY
a~ Id ~Inqoth 6~ . 58, 000 I~e~ si ~rery a Id ~ootl 7 6.9 10,500 Gray an 1 ~moo~)~
9.1 11,000 Gray a~ l ~mooth 6.6 9,500 Gray an i ~mooth lO9 . ~~, 000 S~ooth 11 8.4 11,000 G~ay an ~ ~mc:oth.
2 9.~ 12,000 ~ray an ~ ~moo~h.
13 9.3 13,000 Whi~a ~ no~th 4 6.1 lO,000 t;:cay an d ~;~noot~
:' R~3marks 5 ~he contacts of the Exan~pl~s exhl~it ed 911 amounts af ~l~c arld ~hort break~ng ~imes~

.

Claims (8)

1. A silver-metal oxide composite material comprising a silver matrix, (a) from 1 to 20 % by weight, in terms of elemental metal, of an oxide of at least one element selected from the group consisting of Sn, Cd, Zn and In and, optionally, (b) from 0.01 to 8 % by weight, in terms of elemental metal, of an oxide of at least one element selected from the group consisting of Mg, Zr, Ca, Al, Ce, Cr, Mn and Ti and/or (c) from 0.01 to 8 % by weight, in terms of elemental metal, of an oxide of at lest one ele-ment selected from the group consisting of Sb, Bi and iron family metals; the oxide of the (a) element and, where present, the oxide of the (b) element and/or the oxide of the (c) element being dispersed in the form of fine partic-cles with a particle size of not more than about 0.1 µm uniformly through out the silver matrix from the surface to the core thereof and being bound to the silver matrix with no space left between the oxides and the silver matrix.
2. The material according to Claim 1, wherein the oxide of the (a) element, and the oxide of the (b) element and/or the oxide of the (c) element form a compound oxide and disperse in the matrix.
3. A process for producing a silver-metal oxide com-posite material as claimed in Claim 1, comprising the steps of:
(A) raising the partial pressure of oxygen and heating therein a mixture comprising silver, (a) from 1 to 20 % by weight, in terms of elemental metal, of at least one element selected from the group consisting of Sn, Cd, Zn and In in a metallic and/or oxide state and, optional-ly, (b) from 0.01 to 8 % by weight, in terms of elemental metal, of at least one element selected from the group consisting of Mg, Zr, Ca, Al, Ce, Mn and Ti in a metallic an/or oxide state and/or (c) from 0.01 to 8 % by weight, in terms of elemental metal, of at least one ele-ment selected from the group consisting of Sb, Bi and iron family metals in a metallic and/or oxide state to thereby bring the mixture into a state where a solid phase and a liquid phase coexist, whereby the (a) element in a metal-lic state, and the (b) element and/or the (c) element in a metallic state, where present, are precipitated as oxides, and (B) lowering the partial pressure of oxygen and cooling the mixture.
4. The process according to Claim 3, wherein the mix-ture used in the step (A) comprises an alloy consisting of silver, the (a) element and, optionally, the (b) element and/or the (c) element.
5. The process according to Claim 3, wherein the mix-ture used in the step (A) comprises a sintered product consisting of silver, the (a) element and, optionally, the (b) element and/or the (c) element.
6. The process according to Claim 5, wherein said sintered product is produced from a silver powder and a powder of an alloy of silver, the (a) element and, op-tionally, the (b) element and/or the (c) element.
7. The process according to Claim 5, wherein said sintered product is produced from a solver powder and a powder of an alloy of the (a) element, and the (b) element and/or the (c) element.
8. The process according to Claim 3, wherein the mix-ture used in the step (a) comprises a sintered product produced from a silver powder, (a) a powder of an oxide of the (a) element and, optionally, a powder of an oxide of the (b) element and/or a powder of an oxide of the (c) element.
CA002033139A 1989-12-26 1990-12-24 Silver-metal oxide composite material and process for producing the same Abandoned CA2033139A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP338005/1989 1989-12-26
JP33800589 1989-12-26
JP224090A JPH03207831A (en) 1990-01-09 1990-01-09 Silver-oxide contact material and its manufacture
JP2240/1990 1990-01-09

Publications (1)

Publication Number Publication Date
CA2033139A1 true CA2033139A1 (en) 1991-06-27

Family

ID=26335591

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002033139A Abandoned CA2033139A1 (en) 1989-12-26 1990-12-24 Silver-metal oxide composite material and process for producing the same

Country Status (8)

Country Link
US (1) US5160366A (en)
EP (1) EP0435655B1 (en)
KR (1) KR100194504B1 (en)
CN (1) CN1031071C (en)
CA (1) CA2033139A1 (en)
DE (1) DE69032065T2 (en)
MX (1) MX174201B (en)
PL (1) PL165438B1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286441A (en) * 1989-12-26 1994-02-15 Akira Shibata Silver-metal oxide composite material and process for producing the same
BR9102714A (en) * 1990-06-28 1992-02-04 Sumitomo Metal Mining Co COMPOSITE MATERIALS OF SILVER-OR ALLOY SILVER COPPER-METAL OXIDE AND PRODUCTION PROCESS OF THE SAME
DE4142374A1 (en) * 1991-12-20 1993-06-24 Siemens Ag METHOD FOR PRELIMINATING CONTACT PIECES FOR ELECTRICAL SWITCHING DEVICES
ATE136394T1 (en) * 1992-06-10 1996-04-15 Duerrwaechter E Dr Doduco MATERIAL FOR ELECTRICAL CONTACTS BASED ON SILVER-TIN OXIDE OR SILVER-ZINC OXIDE
EP0660964B2 (en) * 1992-09-16 2003-01-08 AMI DODUCO GmbH Material for electric contacts based on silver-tin oxide or silver-zinc oxide and process for its production
US5595813A (en) * 1992-09-22 1997-01-21 Takenaka Corporation Architectural material using metal oxide exhibiting photocatalytic activity
DE19503182C1 (en) * 1995-02-01 1996-05-15 Degussa Sintered material used as electrical contacts for switching amperage rating
US5846288A (en) * 1995-11-27 1998-12-08 Chemet Corporation Electrically conductive material and method for making
US6106955A (en) * 1997-01-14 2000-08-22 Takenaka Corporation Metal material having photocatalytic activity and method of manufacturing the same
US6277169B1 (en) 1997-02-24 2001-08-21 Superior Micropowders Llc Method for making silver-containing particles
US5794112A (en) * 1997-06-26 1998-08-11 Aluminum Company Of America Controlled atmosphere for fabrication of cermet electrodes
US20060159838A1 (en) * 2005-01-14 2006-07-20 Cabot Corporation Controlling ink migration during the formation of printable electronic features
WO2006076609A2 (en) 2005-01-14 2006-07-20 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US7533361B2 (en) 2005-01-14 2009-05-12 Cabot Corporation System and process for manufacturing custom electronics by combining traditional electronics with printable electronics
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US7575621B2 (en) 2005-01-14 2009-08-18 Cabot Corporation Separation of metal nanoparticles
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
CN100402142C (en) * 2006-03-29 2008-07-16 上海华谊丙烯酸有限公司 Catalyst for synthesizing allyl alcohol by reduction of acrolein and preparation method thereof
DE102013014915A1 (en) * 2013-09-11 2015-03-12 Airbus Defence and Space GmbH Contact materials for high-voltage DC systems
CN103824711B (en) * 2013-12-20 2016-01-20 宁波赛特勒电子有限公司 A kind of double silver base composite oxidate electric contact material and application thereof
CN104201020B (en) * 2014-08-19 2016-05-11 周朝贵 Manufacturing process of siller tin oxide calcium oxide electrical contact and products thereof
CN104201019B (en) * 2014-08-19 2016-05-11 张树堂 Manufacturing process of Ag-ZnO cupric oxide electrical contact and products thereof
CN104201018B (en) * 2014-08-19 2016-05-11 周朝贵 Manufacturing process of Agcdo zirconia electrical contact and products thereof
CN106756199B (en) * 2016-12-14 2018-06-26 东北大学 Hollow tubular oxide enhancing silver-based composited contact material and preparation method thereof
CN107761021B (en) * 2017-09-11 2019-04-30 大连大学 One kind mixing manganese orthorhombic phase stannic oxide reinforced Ag-based electrical contact material and preparation method thereof
KR20220024925A (en) * 2019-09-13 2022-03-03 다나카 기킨조쿠 고교 가부시키가이샤 Contact material for DC high voltage relays and DC high voltage relays
CN112475295B (en) * 2020-09-30 2022-11-15 浙江福达合金材料科技有限公司 Silver ferric oxide electric contact material with oxide particles dispersed and distributed and preparation method thereof
CN115725871A (en) * 2022-11-08 2023-03-03 浙江福达合金材料科技有限公司 Preparation method of silver tin oxide electrical contact material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539298A (en) * 1945-07-28 1951-01-23 Mallory & Co Inc P R Electrical contact of an internally oxidized composition
US2985532A (en) * 1957-12-05 1961-05-23 Engelhard Ind Inc Electrical contacts
USRE29986E (en) * 1972-03-15 1979-05-08 Square D Company Electrical contact material and process
US3969112A (en) * 1974-11-11 1976-07-13 Gte Laboratories Incorporated Process for preparing silver-cadmium oxide alloys
GB1505874A (en) * 1975-08-06 1978-03-30 Plessey Co Ltd Electrically conductive composite materials
US4092157A (en) * 1976-09-10 1978-05-30 Gte Laboratories Incorporated Process for preparing silver-cadmium oxide alloys
US4141727A (en) * 1976-12-03 1979-02-27 Matsushita Electric Industrial Co., Ltd. Electrical contact material and method of making the same
US4217139A (en) * 1977-09-09 1980-08-12 Gte Products Corporation Process of preparing an electrical contact material
US4452652A (en) * 1982-07-08 1984-06-05 Akira Shibata Electrical contact materials and their production method
US4426356A (en) * 1982-09-30 1984-01-17 E. I. Du Pont De Nemours And Company Method for making capacitors with noble metal electrodes
JPS61114417A (en) * 1984-11-08 1986-06-02 中外電気工業株式会社 Ag-sno based composite electric contact material and making thereof
FR2639466B1 (en) * 1988-11-22 1991-02-15 Telemecanique PROCESS FOR PREPARING AN ELECTRICAL CONTACT MATERIAL AND METHOD FOR MANUFACTURING A CONTACT ELEMENT INCORPORATING SUCH A MATERIAL

Also Published As

Publication number Publication date
CN1053817A (en) 1991-08-14
PL288494A1 (en) 1991-09-09
CN1031071C (en) 1996-02-21
MX174201B (en) 1994-04-27
US5160366A (en) 1992-11-03
EP0435655B1 (en) 1998-02-25
EP0435655A2 (en) 1991-07-03
KR100194504B1 (en) 1999-06-15
KR910011642A (en) 1991-08-07
PL165438B1 (en) 1994-12-30
EP0435655A3 (en) 1991-08-14
DE69032065T2 (en) 1998-10-29
DE69032065D1 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
CA2033139A1 (en) Silver-metal oxide composite material and process for producing the same
US4032301A (en) Composite metal as a contact material for vacuum switches
JPH02125802A (en) Method and device for sintering and molding of powder
Allam et al. Influence of small Pt additions on Al 2 O 3 scale adherence
EP0229511A1 (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
KR100375944B1 (en) Process for Making Oxide Dispersion Strengthened Tungsten Heavy Alloy by Mechanical Alloying
US4440572A (en) Metal modified dispersion strengthened copper
Kato et al. Stress-strain behavior and shape memory effect in powder metallurgy TiNi alloys
US4752333A (en) Alloys having high electrical and mechanical characteristics, the production thereof and the uses thereof in particular in the electrical, electronic and connection arts
US3664889A (en) TERNARY, QUATERNARY AND MORE COMPLEX ALLOYS OF Be-Al
US5252147A (en) Modification of surface properties of copper-refractory metal alloys
US5286441A (en) Silver-metal oxide composite material and process for producing the same
EP0622816B1 (en) Electrode and process for forming an electrode material
US3982906A (en) Production of aluminum-aluminum oxide dispersion composite conductive material and product thereof
US3305324A (en) Tungsten powder bodies infiltrated with copper-titanium-bismuth or copper-titanium-tin
Shan’gina et al. Structure and properties of Cu-Cr alloys subjected to shear under pressure and subsequent heating
EP0460680B1 (en) Contact for a vacuum interrupter
CN1292311A (en) Electric contactor and alloy for electrode, preparing method thereof
DE19953780C1 (en) Production of semi-finished material and molded bodies comprises intensively mixing silver and silver alloy powder as matrix powder and powdered particles that increase the strength of the matrix material, and pressing and sintering
PT1080242E (en) TANK AND SILICON ALLOYS PRODUCTS CONTAINING THE SAME AND PROCESSES FOR PRODUCING THE SAME
US3353931A (en) Tungsten-indium powder bodies infiltrated with copper
EP0170651B1 (en) Metal modified dispersion strengthened copper
CN1028770C (en) Polynary copper alloy with low beryllium
CA1227670A (en) Metal modified dispersion strengthened copper
DE19629907A1 (en) Material for contacts of vacuum circuit breaker

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued